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[1] Steep, rocky landscapes commonly exhibit high sedi-
ment yields and are especially sensitive to climate, tectonics,
and wildfire. Predicting landscape response to these pertur-
bations demands a quantitative understanding of erosion
processes. However, existing models for hillslope sediment
production and transport do not apply to landscapes with
patchy soil and slopes that exceed the angle for sediment
stability. Here we present field measurements in southern
California, USA, which indicate that sediment storage on
steep slopes is enabled by vegetation that traps sediment up-
slope. We find that the storage capacity of unburned vegeta-
tion dams follows a geometric scaling model with a cubic
dependence on effective plant width and an inverse depen-
dence on local slope. Measured sediment volumes behind
burned vegetation dams indicate a loss of at least 75% rela-
tive to unburned dams, and when expanded to the catchment
scale, our measurements match records of postfire sediment
yield from nearby retention basins. Contrary to existing
models, our observations indicate that wildfire-induced sedi-
ment yield is driven by transient storage and release of sedi-
ment by vegetation dams, rather than increased bedrock-to-soil
conversion rates. Without a feedback between soil production
and wildfire, fire may play little role in long-term landscape
evolution, and increasing fire frequency in response to climate
change may not result in heightened sedimentation hazards
due to supply limitations. Citation: DiBiase, R. A., and M. P.
Lamb (2013), Vegetation and wildfire controls on sediment yield in
bedrock landscapes, Geophys. Res. Lett., 40, doi:10.1002/grl.50277.

1. Introduction

[2] Quantifying the processes and rates of soil production,
storage, and transport is essential to understanding hillslope
response to tectonic, climatic, and anthropogenic forcing
[Dietrich et al., 2003; Tucker and Hancock, 2010]. While
considerable progress has been made in our understanding
of sediment transport in soil-mantled landscapes [e.g.,
Roering, 2008], much less is known about steep, bedrock
hillslopes that lack a continuous soil cover and where trans-
port events are highly stochastic and involve long travel
distances. Sediment transport processes on steep hillslopes
are dominated by episodic slope failure, ranging from dry ra-
vel to block fall to deep-seated bedrock landslides [Selby,
1993]. Here we focus on the process of dry ravel—the

rolling, bouncing, and sliding of particles in response to dis-
turbance that is common in steep, semi-arid landscapes.
Gabet [2003] and Gabet and Mendoza [2012] used field
and laboratory measurements to show that both sediment
transport distance and volumetric flux from dry ravel
increase rapidly as slopes approach the angle of repose for
loose sediment (typically 30–40�). These results are analo-
gous to similar studies of granular creep processes [Roering
et al., 2001; Tucker and Bradley, 2010] and predict that
sediment flux becomes infinite at slopes that exceed a critical
slope, implying that the sediment flux there must be limited
by the conversion of rock to sediment, and hillslopes should
be devoid of sediment cover. However, bare bedrock slopes
are rare even where local hillslope angles exceed this critical
slope [DiBiase et al., 2012], which can be explained in part
by the local stability provided by vegetation.
[3] Vegetation dams are important because, when inciner-

ated during wildfire, they can rapidly release large volumes
of sediment to river channels [Florsheim et al., 1991; Lamb
et al., 2011], which in turn can fuel catastrophic
hyperconcentrated floods and debris flows [Eaton, 1935;
Wells, 1987; Cannon et al., 2010a; Kean et al., 2011].
Sediment storage by vegetation and its release following
wildfire have not been quantified on bedrock hillslopes,
leaving many first-order questions unanswered: Why does
sediment yield increase following fire? Will climate change
and increased fire frequency result in more sediment
hazards? Do fires affect landscape evolution? In this paper,
we present the first measurements, to our knowledge, of
sediment accumulation behind vegetation dams on steep
bedrock hillslopes and explore the first-order control of
dam width on the storage capacity of vegetation dams. Addi-
tionally, we use previous field estimates of vegetation stem
density and light detection and ranging (LiDAR) topography
to make predictions of catchment-scale sediment storage in
the front range of the San Gabriel Mountains in California,
and use nearby rates of soil production to explore the time-
scales of hillslope response to fire.

2. Field Setting

[4] The San Gabriel Mountains (SGM) are an ideal testing
ground for studying the interplay of sediment transport,
vegetation, and wildfire on steep slopes. They are composed
primarily of highly fractured granitic and metamorphic rock
that despite its weakness sustains catchment-mean hillslope
angles of up to 40� due to rapid uplift (0.5–1mm/yr) along
the Sierra Madre-Cucamonga fault system [Spotila et al.,
2002; Lavé and Burbank, 2004; DiBiase et al., 2010]. Due
to their proximity to metropolitan Los Angeles and their as-
sociation with earthquake, fire, flooding, and debris flow
hazards, the SGM have been intensely studied for nearly a
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century [Eaton, 1935; Krammes, 1965; Wells, 1987;
Heimsath et al., 2012]. The sites for this study are located
primarily in the upper reaches of Little Santa Anita Canyon
at elevations of 1200–1400m, with mean local hillslope an-
gles between 30� and 45� (Figure 1a). We focused on a re-
gion that had not been burned since 1954 (Fire and Resource
Assessment Program, California Department of Forestry and
Fire Protection, http://frap.cdf.ca.gov), and for comparison,
we also investigated nearby sites that were burned in the
2009 Station Fire.

3. Sediment Trapping by Vegetation

[5] We begin with the hypothesis that sediment volume,
V, behind vegetation dams on steep slopes can be described
by a pyramidal geometry as

V ¼ 1

24
W 3 tan2g

tanS � tana
; (1)

where W is the effective dam width, S is the local hillslope
angle, g is the pile side slope, and a is the pile top slope
[e.g., Fu, 2004] (Figure 2). To test the model, we character-
ized geometries and measured volumes of 22 sediment piles
behind vegetation dams on local slopes (averaged over 5 m)
ranging from 30� to 48�.
[6] We measured piles behind three vegetation types: trees

(Pseudotsuga macrocarpa), shrubs (Ceonothus), and yuccas
(Hesperoyucca whipplei), as well as for yuccas burned
during the 2009 Station Fire (see Table S1 in the Supporting
Information). We measured pile and plant dimensions and
local slopes using a tape measure and clinometer, and deter-
mined sediment volume and mass by excavating sediment
piles into 5 gal buckets and weighing material in the field.
We defined the sediment pile behind each plant as the accu-
mulation above the local thickness of mobile soil, if present.
We defined the plant width as the width of live vegetative
cover at the base of the plant. For select unburned yuccas,
we also measured the diameter of the caudex (base) to de-
velop a relationship between the caudex diameter and effec-
tive dam width. At the burned sites, surviving yuccas lacked
basal vegetative cover except for the caudex, and we used
measurements of the caudex diameter to infer the prefire ef-
fective dam width based on the relationship derived from
unburned yuccas (Table S1).
[7] Field measurements show that the first-order control on

sediment pile volumes for the three different vegetation types
is the effective dam width (Figure 3a). Measured sediment vol-
umes scale approximately with the effective dam width cubed
and indicate that pile geometries grow similarly, consistent with
equation (1). Measurements of sediment trapped behind re-
cently burned yuccas suggest that following fire, yuccas release
at least 75% of accumulatedmaterial bymass wasting due to the
incineration of the dam and of organic material within the pile
itself (Figure 3a). This is aminimum estimate as 100% sediment
release is observed for yuccas that are completely incinerated.
For shrubs and yuccas, we found that the effective dam width
is similar to (or less than) the plant width, which includes both
the basal stems and low-lying vegetative material (Figure 3b).
For trees, however, the effective dam width is larger than the
basal trunk diameter due to trapped ground litter (Figure 3b).
In contrast to shrubs and yuccas, trees often remain standing fol-
lowing fire, and it is likely that the burning of this trapped
ground litter destabilizes accumulated sediment piles rather than

the loss of live vegetative material. Assuming a constant angle
of 30� for pile top and side slopes (a and g, Figure 2b), which
corresponds to the angle of repose for loose noncohesive sedi-
ment and is consistent with field observations, and using the
measured local slope and vegetation dam width, the predicted
vegetation storage capacities from equation (1) agree well with
field-measured volumes (Figure 3c).

4. Catchment-Scale Estimates of Transient
Sediment Storage

[8] The strong agreement between the field measurements
and predictions from equation (1) (Figure 3c) enables the
quantification of transient hillslope sediment storage at the
catchment scale if the size and distribution of vegetation
cover are known. We generated a map of hillslope sediment
storage capacity over a 2.4 km2 region of the study area by
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Figure 1. Map of the study area in the San Gabriel Moun-
tains, California. (a) LiDAR slope map highlighting local
(averaged over 5 m) hillslope angles between 30� and 45�
(red) where sediment accumulation behind vegetation dams
is prevalent. Diamonds indicate unburned sample locations
within this catchment (Table S1). (b) Predicted hillslope sed-
iment thickness for the study area. Hillslopes less than 30� are
assumed to be soil-mantled, while hillslopes greater than 45�
are assumed to be bedrock. Note that equation (1) predicts
that storage capacity becomes infinite as tan S approaches
tan a (corresponding to a continuous soil mantle) and be-
comes small as local slopes become increasingly steep.
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applying equation (1) to a 1m resolution LiDAR-derived
digital elevation model (Figure 1b). At each grid cell, we
calculated the effective sediment thickness averaged over
the cell area H as H= cV, where c is the plant density per unit
area and V is the volumetric sediment storage capacity

per plant. We used a stem density of 0.5 plants/m2 from
nearby vegetation surveys [Keeley, 1992] and for simplicity
assumed an average effective dam width of 1m, based on
field observations (Figure 3). We assumed a= g = 30� and
used LiDAR-derived measurements of the local hillslope an-
gle averaged over five cells to determine S, which varies
across the landscape. Field observations indicate that for lo-
cal slope angles less than 30�, a continuous soil mantle ex-
ists, and sediment piles diffuse across the landscape. On
slopes steeper than 45�, vegetation is sparse, as indicated
from analyzing LiDAR first returns, and hillslopes are rocky
[DiBiase et al., 2012] (Figure 4). As we are primarily inter-
ested in quantifying the volume of sediment that is unstable
in the absence of vegetation dams, we applied equation (1)
only to cells in the landscape with hillslope angles between
30� and 45�. Our map of effective sediment pile thickness
(Figure 1b) highlights these three distinct hillslope regimes
based on local slope and emphasizes that it is the vegetation
on slopes just steeper than the angle of repose that have the
highest storage capacity for raveling sediment.
[9] Sediment pile bulk densities range from 0.4 to 1.8 g/cm3

(Table S1), with a weighted mean of 1.1 g/cm3 (combined
mass of all samples divided by combined volume of all
samples). Less dense piles reflect higher organic content, and
assuming a bulk density of 1.8 g/cm3 for the mineral fraction
and 0.1 g/cm3 for the organic fraction implies a mean organic
content of 40%. To convert sediment pile volumes and effec-
tive sediment thicknesses to equivalent bedrock lowering
rates, we assumed an intact rock density of 2.6 g/cm3 typical
of granitic rock. Averaged over the entire study area, the stor-
age capacity of sediment behind vegetation dams is equivalent
to ~3.5 cm of soil or ~1.4 cm of rock after accounting for soil
density and organic content.

5. Implications for Landscape Evolution and
Hazard Mitigation

[10] The measured sediment storage by plants on steep
slopes is large and likely dominates transient sediment fluxes
in steep terrain. For example, nearby rates of soil production
and catchment-averaged erosion rates measured from in situ
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Figure 3. Field measurements of sediment accumulations behind vegetation dams. (a) Measured sediment pile volume (V)
versus effective vegetation dam width (W) for all piles, with forced cubic regressions through unburned (solid line) and
burned (dashed line) data points. Effective dam width may differ from measured plant dimensions (Figure 3b). For burned
volumes, data are plotted using inferred prefire effective dam width. (b) Effective vegetation dam width (W) versus plant
width (Wp). Solid line indicates linear fit to Douglas Fir data points, highlighting the role of downed branches extending
vegetation dam influence. Dashed line is 1:1 for reference. (c) Measured sediment pile volume versus predicted volume from
equation (1), assuming a = g = 30�.
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Figure 2. Geometric model for sediment piles. (a)
Sediment accumulation behind yucca on an otherwise bare
rock slope (sg12011104; Table S1). Dashed line indicates
top profile of the sediment pile. (b) Schematic showing
pyramidal geometry and dam width (W), hillslope angle
(S), and sediment pile angles (a and g) used in equation (1).
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produced cosmogenic 10Be concentrations in saprolite and
stream sands are approximately 0.5mm/yr [DiBiase et al.,
2010; Heimsath et al., 2012]. Thus, at a minimum, the mate-
rial stored behind vegetation dams represents ~30 years of
soil production (i.e., 14mm/0.5mm yr�1 = 28 years) and
potentially much more if the trapping efficiency of vegetation
dams is less than 100%. Measurements of postfire pile vol-
umes suggest a substantial loss following dam incineration
(>75%, Figure 3a), and for hillslopes steeper than the angle
of repose for loose sediment, this material will be transported
rapidly to the channel network. Our model provides a pro-
cess-based explanation for the immediate loading of channels
by dry ravel that is well documented in the SGM following
wildfire [e.g., Rice, 1982]. Compilations of debris basin re-
cords indicate that in the first years following wildfire, catch-
ment-scale sediment yields can increase tenfold [Lavé and
Burbank, 2004; Lamb et al., 2011], often in the form of cat-
astrophic debris flows [e.g., Eaton, 1935]. Our field measure-
ments illustrate how these postfire sediment hazards can be
assessed directly before wildfire.
[11] Current approaches to modeling landscape response

to wildfire either treat hillslope processes with statistical
regression models [Cannon et al., 2010b] or focus on soil-
mantled landscapes where continuum models of soil trans-
port are appropriate [Roering and Gerber, 2005; Jackson
and Roering, 2009]. A common prediction from such
models is that an increase in sediment yield following fires
is additive to the “background” sediment yield in the
absence of fire so that increased fire frequency will result
in increased sediment yield [Lavé and Burbank, 2004;
Roering and Gerber, 2005], predictions that are ultimately
relevant for landscapes with thick soil mantles without a sup-
ply limitation. These feedbacks occur because of the strong
coupling between soil transport, thickness, and production
in soil-mantled landscapes [Heimsath et al., 1997; Roering,

2008] and imply that the conversion of bedrock to soil de-
pends on fire frequency; thus, fires leave a long-term signa-
ture on landscape form. The same feedbacks are not likely
to hold in bedrock landscapes, where the observation of ex-
posed bedrock and hillslopes with gradients that exceed the
threshold for sediment stability (e.g., Figure 1a) indicates that
the rates of sediment production and soil transport are
decoupled and that the threshold for sediment stability is di-
vorced from any threshold in the topographic slope [Burbank
et al., 1996].
[12] Owing to the potential for significant transient storage

and release of soil in bedrock landscapes, an increase in
the rate of soil production is not needed to explain wildfire-
induced sediment yield, with implications for the predicted
increase in fire frequency due to climate change over the next
century [e.g., Westerling and Bryant, 2008]. For the steep
bedrock hillslopes described here, sediment response to fire
is governed by the volume of trapped material behind vegeta-
tion dams, which depends on the soil production rate, the
vegetation regrowth rate, and the time since the last fire
[Lamb et al., 2011]. Because the timescale of refilling sedi-
ment behind vegetation dams is both longer than the time
for plants to recover and similar to current fire recurrence in-
tervals [Lamb et al., 2011], the rate of soil production is the
rate-limiting step in determining the storage of underfilled
vegetation dams. Therefore, a change in fire regime towards
more frequent fires may not result in increased sedimentation
rates due to supply limitations. Furthermore, our results
suggest that on slopes that exceed the angle for sediment
stability, sediment flux is controlled by biogeomorphic inter-
actions that may be sensitive to climatic variations in a way
not previously recognized.
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