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Many bedrock canyons on Earth and Mars were eroded by
upstream propagating headwalls, and a prominent goal in geo-
morphology and planetary science is to determine formation
processes from canyon morphology. A diagnostic link between
process and form remains highly controversial, however, and field
investigations that isolate controls on canyon morphology are
needed. Here we investigate the origin of Malad Gorge, Idaho,
a canyon system cut into basalt with three remarkably distinct
heads: two with amphitheater headwalls and the third housing
the active Wood River and ending in a 7% grade knickzone.
Scoured rims of the headwalls, relict plunge pools, sediment-
transport constraints, and cosmogenic (3He) exposure ages indi-
cate formation of the amphitheater-headed canyons by large-scale
flooding ∼46 ka, coeval with formation of Box Canyon 18 km to
the south as well as the eruption of McKinney Butte Basalt,
suggesting widespread canyon formation following lava-flow
diversion of the paleo-Wood River. Exposure ages within the
knickzone-headed canyon indicate progressive upstream young-
ing of strath terraces and a knickzone propagation rate of 2.5
cm/y over at least the past 33 ka. Results point to a potential di-
agnostic link between vertical amphitheater headwalls in basalt
and rapid erosion during megaflooding due to the onset of block
toppling, rather than previous interpretations of seepage erosion,
with implications for quantifying the early hydrosphere of Mars.

megaflood | knickpoint | sapping | waterfall

Landscapes adjust to perturbations in tectonics and base level
through upstream propagation of steepened river reaches,

or knickzones, thereby communicating environmental signals
throughout a drainage basin (e.g., ref. 1). Nowhere are knick-
zones more important and apparent than in landscapes where
canyon heads actively cut into plateaus, such as tributaries of the
Grand Canyon, United States, and the basaltic plains of Mars
(e.g., refs. 2–4). Here the stark topographic contrast between
low-relief uplands and deeply incised canyons sharply delineates
canyon rims and planform morphology. Canyon heads can have
varied shapes from amphitheaters with vertical headwalls to more
pointed planform shapes with lower gradients, and a prominent
goal in geomorphology and planetary science is to link canyon
morphology to formation processes (e.g., refs. 4–8), with impli-
cations for understanding the history of water on Mars.
Amphitheater-headed canyons on Mars are most likely cut

into layered basalt (9, 10), and canyon-formation interpretations
have ranged widely from slow seepage erosion to catastrophic
megafloods (4–6, 11, 12). Few studies have been conducted on
the formation of amphitheater-headed canyons in basalt on Earth,
however, and instead, terrestrial canyons in other substrates are
often used as Martian analogs. For example, groundwater sap-
ping is a key process in forming amphitheater-headed canyons in
unconsolidated sand (e.g., refs. 8, 13, 14), but its importance is
controversial in rock (5, 12, 15). Amphitheater-headed canyons
are also common to plateaus with strong-over-weak sedimentary
rocks (3, 16); however, here the tendency for undercutting is so
strong that canyon-head morphology may bear little information
about erosional processes, whether driven by groundwater or
overland flow (e.g., refs. 3, 5, 17). Canyons in some basaltic

landscapes lack strong-over-weak stratigraphy, contain large
boulders that require transport, and show potential for headwall
retreat by block toppling (18–21), all of which make extension of
process–form relationships in sand and sedimentary rocks to
basalt and Mars uncertain.
To test the hypothesis of a link between canyon formation and

canyon morphology in basalt, we need field measurements that
can constrain formation processes for canyons with distinct mor-
phologies, but carved into the same rock type. Here we report on
the origin of Malad Gorge, a canyon complex eroded into co-
lumnar basalt with markedly different shaped canyon heads.
Results point to a potential diagnostic link between canyon-head
morphology and formative process by megaflood erosion in basalt.
Malad Gorge is a tributary to the Snake River Canyon, Idaho,

within the Snake River Plain, a broad depression filled by volcanic
flows that erupted between ∼15 Ma and ∼2 ka (22, 23). The gorge
sits at the northern extent of Hagerman Valley, a particularly wide
(∼7 km) part of the Snake River Canyon (Fig. 1). Malad Gorge is
eroded into the Gooding Butte Basalt [40Ar/39Ar eruption age:
373 ± 12 ka (25)] which is composed of stacked lava beds, each
several meters thick with similar well-defined columns bounded by
cooling joints and no apparent differences in strength between
beds. The Wood (or Malad) River, a major drainage system from
the Sawtooth Range to the north, drains through Malad Gorge
before joining the Snake River. The Wood River is thought to
have been diverted from an ancestral, now pillow lava-filled can-
yon into Malad Gorge by McKinney Butte basalt flows (24)
[40Ar/39Ar eruption age: 52 ± 24 ka (25) (Fig. 1).
Malad Gorge contains three distinct canyon heads herein re-

ferred to as Woody’s Cove, Stubby Canyon, and Pointed Canyon
(Fig. 2A). Woody’s Cove and Stubby have amphitheater heads
with ∼50-m-high vertical headwalls (Fig. 2C), and talus accu-
mulation at headwall bases indicates long-lived inactive fluvial
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transport (Fig. 3 A and B). Woody’s Cove, the shortest of the
three canyons, lacks major spring flows and has minor, in-
termittent overland flow partially fed by irrigation runoff that
spills over the canyon rim. Stubby has no modern-day overland
flow entering the canyon, and springs emanate from a pool near
its headwall (Fig. 3B). In contrast, Pointed Canyon is distinctly
more acute in planform morphology, contains a 7% grade
knickzone composed of multiple steps rather than a vertical
headwall (Figs. 2C and 3C), and extends the farthest upstream.
Early work attributed the amphitheater-headed canyons in this

region—Malad Gorge, Box Canyon, located 18 km south of
Malad Gorge (Fig. 1), and Blue Lakes Canyon located 42 km to
the SE—to formation by seepage erosion because of no modern
overland flow and the occurrence of some of the largest springs
in the United States in this region (7). Because spring flows (e.g.,
∼10 m3/s in Box Canyon; US Geological Survey gauge 13095500)
are far deficient to move the boulders that line the canyon floors,
Stearns (7) reasoned that the boulders must chemically erode in
place. This explanation is improbable, however, given the young
age of the Quaternary basalt (25), spring water saturated in
dissolved solids (19), and no evidence of rapid chemical weath-
ering (e.g., talus blocks are angular and have little to no
weathering rinds). Instead of groundwater sapping, Box Canyon
was likely carved by a large-scale flood event that occurred ∼45
ka based on 3He cosmogenic exposure age dating of the scoured
rim of the canyon headwall (19, 26). In addition, Blue Lakes
Canyon was formed during the Bonneville Flood [∼18–22 ka (27,
28)], one of the world’s largest outburst floods that occurred as
a result of catastrophic draining of glacial lake Bonneville (21).
In both cases, canyon formation was inferred to have occurred
through upstream headwall propagation by waterfall erosion.

Herein we aim to test whether the amphitheater-headed canyons
at Malad Gorge also owe their origin to catastrophic flooding,
whether Pointed Canyon has a different origin, and whether can-
yon morphology is diagnostic of formation process. To this end we
present field observations, sediment-size measurements, hydraulic
modeling, and cosmogenic exposure ages of water-scoured rock
surfaces and basalt-flow surfaces (Methods and Tables S1 and S2).

Results
We inspected the canyon rims and the escarpment that separates
Woody’s Cove from the rest of Malad Gorge and mapped
scoured rock as indications of overland flow. Scours consist of
linear abrasion marks (flutes), often millimeters in depth and
centimeters long, that fan outward in the inferred downstream
flow direction (Fig. S1). The amphitheater-headed canyons at
Malad Gorge have scoured rock upstream indicating overland
flow in the past (Fig. 2). Both amphitheater-headed canyons have
notches cut into their headwalls showing evidence for plucking
(missing blocks) and abrasion (polished and fluted rock surfaces).
For example, the notch at the head of Stubby Canyon is ∼10 m
deep with respect to the neighboring basaltic plain and cuts ba-
salt-flow stratigraphy (Fig. 3D). In addition, both amphitheater-
headed canyons have large pools at their heads (e.g., Fig. 3B),
similar to plunge pools at the base of waterfalls. The pool at
Stubby Canyon, for example, is ∼120 m in diameter (Fig. 4A)
and partially filled with sediment. Canyon headwalls are vertical
and not undercut (Fig. 3 A and B), and the bedrock is blocky and
jointed suggesting canyon-head erosion by block plucking and
toppling (18, 29). The bedrock scours upstream of the canyon
heads, scoured notches at the canyon-head rims, vertical and blocky
canyon headwalls, and large relict plunge pools at Malad Gorge
canyons are similar to features found at Box Canyon and Blue
Lakes Canyon, evidence used at those sites and elsewhere to sup-
port canyon formation by large-scale flooding (e.g., refs. 19–21, 30).
We collected samples of polished bedrock surfaces from the

notches of the amphitheater-headed canyons for cosmogenic
3He exposure age dating (Methods and Tables S1 and S2). In
both cases, eroded notches are sufficiently deep (10 m for Stubby
Canyon and 2.6 m for Woody’s Cove) that any inherited cosmo-
genic exposure before erosion is negligible. The exposure age at the
rim of Woody’s Cove is 47 ± 3 ka, which is within error of the
oldest of three samples taken from the rim of Stubby (46 ± 3 ka).
These ages are also within error of the age of the notch cut into
the rim of Box Canyon [45 ± 5 ka (26)]. The other four samples of
scoured rock within Stubby Canyon cluster with an average of
20.6 ± 2.6 ka (Table S2), coincident with upper age constraints for
the Bonneville Flood (27, 28). Together, these exposure ages in-
dicate the formation of all three amphitheater-headed canyons in
this region (Box Canyon, Woody’s Cove, and Stubby Canyon)
may have been coeval, ceasing ∼46 ka, except for later reworking
during backwater inundation by the Bonneville Flood.
To constrain the discharge necessary to mobilize the boulders

that line the canyon floors, which is a necessary condition for
canyon formation, we measured sediment sizes and surveyed
channel dimensions within Stubby Canyon (at GS1 in Fig. 2B;
Methods). Median particle diameters are 0.58 m with the largest
boulders exceeding 3 m (Fig. 4B). The river-bed gradient down-
stream of the plunge pool has a near-constant slope of 0.0043
(Fig. 4A), and modern spring-fed water depths average 1.0 m
(Fig. 4C). These data were used as inputs into hydraulic re-
sistance and incipient sediment motion formulas (Methods) to
find a modern spring discharge of 11 m3/s [similar to measure-
ments within Box Canyon (19)] and a paleoflood necessary to
mobilize the boulder bed that has a calculated minimum dis-
charge of 1,250 m3/s and a minimum water depth of 9 m (Fig.
4C). Large paleodischarges are also inferred from boulder bars
(median grain diameter of 0.32 m; Fig. 4B) upstream of the
canyon (GS2 in Fig. 2B) where the flood was largely unconfined.
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2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1312251111 Lamb et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1312251111/-/DCSupplemental/pnas.201312251SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1312251111/-/DCSupplemental/pnas.201312251SI.pdf?targetid=nameddest=ST2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1312251111/-/DCSupplemental/pnas.201312251SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1312251111/-/DCSupplemental/pnas.201312251SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1312251111/-/DCSupplemental/pnas.201312251SI.pdf?targetid=nameddest=ST2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1312251111/-/DCSupplemental/pnas.201312251SI.pdf?targetid=nameddest=ST2
www.pnas.org/cgi/doi/10.1073/pnas.1312251111


The calculated minimum canyon-forming discharge is approxi-
mately sevenfold the largest historic discharge of the Wood
River (181 m3/s over a 98-y record; US Geological Survey gauge
13152500) and more than 100-fold the calculated modern spring
discharge, indicating that the flood(s) that carved the amphi-
theater-headed canyons of Malad Gorge were extraordinary.
Our discharge estimate is consistent with calculated flow depths
of 2–6 m needed to exceed the threshold for megaflood erosion
by block toppling in this region (18). Moreover, it is similar to
the discharge calculated for the canyon-carving flood at Box
Canyon [800–2,800 m3/s (19)] and far smaller than discharge
calculated for the Bonneville Flood [106 m3/s (30)].
In contrast to the two amphitheater-headed canyons at Malad

Gorge, the third canyon ends in an active knickzone that houses
the Wood River (Fig. 3C) and contains abundant markers of
active fluvial abrasion (rather than block toppling), most notably,
nested potholes (Fig. 3E). At the upstream extent of the knick-
zone, the active channel narrows from ∼20 to ∼1 m in width as
water plunges into the gorge and abandons the pothole-laden
river bed at its margins as a strath terrace (Fig. 3E). Similar strath
terraces abut both sides of Pointed Canyon along its upper ∼1 km.
Upstream of Malad Gorge, the Wood River is anabranching, and
the propagation of the uppermost knickpoint appears to have pi-
rated water that once flowed into a neighboring channel (Fig. S2).
The abandoned channel contains abundant potholes and a now-dry
waterfall (Fig. 3F). Additional abandoned channels exist farther
downstream on both sides of Pointed Canyon (Fig. 2B), and

abrasion marks within the channels indicate flow into Pointed
Canyon in some cases and out of Pointed Canyon in other cases,
supporting progressive abandonment of anabranches due to
knickzone propagation.
To test whether Pointed Canyon was formed by progressive

knickzone retreat, we collected samples for exposure age dating
from strath terraces and abandoned channels (Fig. 2B, Methods,
and Tables S1 and S2). Three of the resulting dates fall within
the age range of the Bonneville Flood, and because the Bon-
neville Flood likely inundated Malad Gorge in full (30), re-
working and erosion of even the uppermost terraces cannot be
ruled out. The other exposure ages show progressive younging in
the upstream direction (Fig. 5) with a ∼33-ka abandoned channel
at x = 1,300 m (where x is the distance from the confluence of
Pointed and Stubby canyons), to an 11-ka abandoned channel at
x = 1,900 m, to the most upstream extent of the knickzone where
terrace abandonment is active (Fig. S2 and Fig. 3E). These ages
suggest, over at least the past 33 ka, a constant rate of knickzone
retreat of 2.5 cm/y (by linear regression, r2 = 0.99), and a con-
stant rate is expected given that 1 km of retreat has not affected
the 7,800 km2 drainage area to the knickpoint (e.g., refs. 1, 2). It
is possible that the Bonneville Flood partially affected all of the
exposure ages in Pointed Canyon, but this cannot explain the 11
ka age that is younger than the flood, nor the linear, upstream-
younging trend in ages that intersects the modern knickpoint
location at ∼0 ka (Fig. 5). Moreover, flood erosion, where it
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occurred, likely completely reset ages owing to plucking of meter-
scale blocks.

Discussion
Scoured rock, eroded notches into canyon-head rims, plunge
pools, sediment-transport constraints, and cosmogenic exposure
ages suggest that the amphitheater-headed canyons of Malad
Gorge were carved by large-scale flooding that ceased ∼46 ka,
and similar data from Box Canyon (19, 26) suggest a common
origin. Exposure ages of the canyon heads are similar to the
eruption age of the McKinney Butte Basalt [40Ar/39Ar age of
52 ± 24 ka (25)], and independent evidence that the Wood River
was diverted to its present course at this time (24) suggests
a causal connection between diversion of the Wood River and
the incision of Malad Gorge and Box Canyon. This hypothesis is
consistent with the onset of a regional loess deposit [∼40 ka (31)]
that does not show flood scour and must postdate flooding, in
addition to the surface exposure age we measured for Notch
Butte Basalt (3He age of 52.8 ± 3.4 ka; Methods and Tables S1
and S2), which is largely loess free, crosscut by the Wood River
just upstream of the knickzone, and must predate river diversion
(Fig. 1). To improve age constraints for McKinney Butte Basalt,
we measured an 3He exposure age of the flow surface of 31.9 ±
1.9 ka (Fig. 1, Methods, and Tables S1 and S2); however, this age
is necessarily a minimum eruption age due to abundance of loess
cover here (23) and potential for erosion of the original flow
surface (32). Still, we cannot rule out the possibility that the
Wood River diversion postdates formation of the amphitheater-
headed canyons, in which case an alternative flood source such

as a glacial lake outburst (e.g., refs. 19, 33, 34) from the Sawtooth
Range must be invoked.
The similar timing of the McKinney Butte basalt flows and the

cessation of flooding recorded by exposure ages on the canyon
rims suggests that flooding was short-lived and possibly a single
event. Given that the necessary discharge for canyon cutting far
exceeds historical floods of the Wood River, we suggest lava
flows must have dammed the Wood River resulting in outburst
flooding where sheets of flood water focused locally to erode
distinct amphitheater-headed canyons. These floods may also
have eroded the eastern wall of the Snake River canyon between
Malad Gorge and Box Canyon resulting in the anomalously wide
Hagerman Valley (Fig. 1). Furthermore, a short-duration flood
event explains why there is little landscape dissection upstream
of the canyon heads; in the absence of an unbuttressed escarp-
ment, block toppling is not possible (18, 29), and the floods must
have been limited to the comparatively slow processes of fluvial
abrasion and localized plucking, which require thousands of
years or more for channelization (1).
Once volcanism at McKinney Butte ceased, we infer that the

Wood River established its modern path to Pointed Canyon and
abandoned the amphitheater-headed canyons. Given the mea-
sured knickzone retreat rates of 2.5 cm/y in Pointed Canyon, our
interpretation implies that Pointed Canyon was ∼1 km long at
the cessation of megaflooding (Fig. 5), placing the ancestral
canyon head near the location where the modern-day canyon
begins to taper in width (blue star in Fig. 2B). Therefore, Pointed
Canyon may have been partly carved by megaflooding and may
once have had an amphitheater head, perhaps similar to the
branching amphitheater-headed canyons on Mars (4). Since the

Fig. 3. Photographs of (A) headwall of Woody’s Cove (person for scale, circled), (B) ∼50-m-high headwall of Stubby Canyon, (C) downstream-most waterfall
at Pointed Canyon knickzone (12-m-high waterfall with overcrossing highway for scale), (D) fluted and polished notch at the rim of Stubby Canyon (notch
relief is 10 m), (E) upstream-most waterfall at Pointed Canyon knickzone (within the southern anabranch of Fig. S2), and (F) upstream-most abandoned
channel in Fig. 2B and Fig. S2 (channel relief is ∼10 m). White coloring on the headwalls in A and B is likely residue from irrigation runoff.
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cessation of megaflooding, the comparatively low discharges of
the Wood River do not exceed the threshold for block toppling,
leaving only the steady upstream propagation of the pointed
headwall by fluvial abrasion.
Our study suggests that amphitheater-headed canyons with

vertical walls in columnar basalt may be a diagnostic indicator of
rapid megaflood erosion rather than persistent fluvial abrasion
or seepage erosion. The rationale for this hypothesis is that i)
basalt with vertical cooling joints and horizontal bedding planes
tends to break down to large, meter-sized boulders that cannot
be transported by seepage alone; ii) vertically jointed rock pro-
motes persistent vertical headwalls and rapid erosion if a
threshold discharge for block toppling is surpassed, which in turn
requires high-magnitude overland flows (18); and iii) the over-
land flow events must be of short duration, otherwise fluvial
abrasion will tend to flatten the headwall and dissect the up-
stream landscape, as shown in Pointed Canyon. There are a host
of canyons cut into columnar basalt by megafloods that support
our hypothesis: Asbyrgi Canyon in Iceland (35), canyons cut by
the Missoula Floods (20), Blue Lakes Canyon and Devil’s Corral
cut by the Bonneville Flood (21, 28, 30), and Box Canyon (19).
Many of these terrestrial amphitheater-headed canyons in

basalt appear morphologically similar to putative cataracts in
outflow channels and valley networks with amphitheater heads
on Mars (e.g., refs. 4, 6, 12). Given confirmation of columnar
basalt (e.g., ref. 10) and canyon heads that lack well-developed
undercuts, Martian canyons with amphitheater heads may also
owe their origin to short-lived, high-magnitude flood events,
possibly sourced from subsurface water eruptions, dam-burst
floods, or lake spillover (e.g., ref. 36). Most landscape evolution
models applied to Earth and Mars do not include jointed rock or
erosion by toppling and consequently only produce amphithe-
ater-headed canyons by using rules for seepage erosion in sand
(e.g., refs. 8, 15, 37). In contrast, in basalt the onset of toppling
may be the tipping point to form amphitheater-headed canyons,
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Fig. 4. (A) Thalweg long profile of the head of Stubby Canyon showing the
modern (spring-driven) water level. The region of the river bed downstream of
the plunge pool (S = 0.0043) was used for hydraulic calculations. (B) Sediment-
size distributions within the survey location of Stubby Canyon (GS1 in Fig. 2B;
113 counts) and of a boulder bar upstream of the canyons (GS2 in Fig. 2B; 32
counts). The median sediment size (D50) at location GS1 was used for calcu-
lations (Methods). (C) Surveyed canyon cross-section of Stubby Canyon at GS1
(Fig. 2B) showing the flood depth calculated to move the bouldery bed
(Methods) and the modern flow depth. The break in slope at 958-m elevation
represents the transition from bedrock walls above to talus below.
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Fig. 5. Exposure age versus distance projected along the long profile (Fig.
2C) of Pointed Canyon. Three samples (open symbols) yielded ages consistent
with reworking by the Bonneville Flood and are not included in the fit (note
one of the three falls nearly on the trend line). Error bars represent ana-
lytical uncertainty (Table S2), which is often smaller than the symbol size. The
most upstream age of zero (filled circle) is assumed based on the observed
location of active knickzone retreat (Fig. 3E and Fig. S2). Data suggest
Pointed Canyon was 1.05 km long (blue star in Fig. 2B) when formation of
the other canyons ceased (∼46 ka). The Bonneville Flood age range shown
extends a few thousand years older than is typically reported based on re-
vised chronology of paleoshorelines (27) and canyon exposure ages (28).
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which implies drastically different water discharges and flow
durations for canyon formation than groundwater sapping.

Methods
Fourteen rock samples were taken for 3He cosmogenic exposure-age dating:
five from Stubby Canyon, six from Pointed Canyon, one from Woody’s Cove,
one from McKinney Butte Basalt, and one from Notch Butte Basalt (Figs. 1
and 2 and Tables S1 and S2). A cosmic ray-shielded sample used to correct all
canyon erosion samples (BG0 in Table S1) was taken from 5.8 m deep within
a crack located ∼4 m from the canyon sidewall of Pointed Canyon. The crack
splits a viewing platform indicating it has opened historically. Shielded
samples for McKinney Butte and Notch Butte basalts were taken from road
cuts (MB0 and NB0 in Table S2).

Samples were collected by chipping off the upper 4 cm of rock on near-
horizontal surfaces. We separated 250- to 450-μm-diameter olivine and py-
roxene grains from the crushed host rock by standard magnetic, heavy liquid,
and hand picking techniques. Adhering groundmass was removed by sonicat-
ing samples in 5% (vol/vol) 2:1 HF:HNO3 acid for ∼1 h. Samples were ground
and wet-sieved to <37 microns which largely removes mantle-derived 3He
trapped in melt and/or fluid inclusions (38). The remaining matrix-sited 3He
and 4He was measured on a MAP 215-50 noble gas mass spectrometer

following heating to 1,300 °C in vacuum to release the gas (39) (Table S1).
Shielded samples were used to correct for remaining mantle-derived and
nucleogenic 3He (40), which only averaged 6% of the total measured 3He
(Table S1). Accumulation ages and production rates (Tables S1 and S2) were
calculated using the Lifton/Sato scaling scheme (41, 42) on the CRONOS 3He
calculator (43, 44).

To calculate minimum paleodischarge, we surveyed a cross-section and
long profile using a total station (Fig. 4 A and C). Sediment-size measure-
ments of the intermediate particle axis (Fig. 4B) were made on a regular-
spaced grid (Fig. 2A). Thalweg flow depths required for transport of the me-
dian particle size were calculated using ref. 45. Using calculated water depth
and surveyed canyon cross-sectional area (Fig. 4C), we calculated the minimum
paleoflood discharge following (46), where the bed-roughness length scale
was 1.3 D84 (where D84 = 1.3 m is the sediment diameter in which 84% of the
bed is finer; Fig. 4B) following a calibration in similar Box Canyon (19).
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Fig. S1. Examples of scoured rock near the abandoned channel on the north side of Stubby Canyon (Fig. 2B). (A) Abraded and fluted bedrock where large-
scale rock roughness in the foreground is ∼1 m. (B) Close-up of abraded rock (∼1 m in diameter) from A showing curvature of fine-scale flutes. (C) Close up
photograph of fluted rock from B showing centimeter-scale flutes that fan out in the inferred flow direction (left to right). (Pencil for scale, 15 cm.)
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Fig. S2. Aerial orthophoto of the upstream extent of the knickzone in Pointed Canyon showing the most upstream waterfall (Fig. 3E and black circle in Fig.
2B) and the most upstream abandoned channel (Fig. 3F and blue dashed line in Fig. 2B) (US Geological Survey).

Table S1. Geochemical measurements

Sample name Olivine mass (g)
[3He]melt

(106 at/g)
[4He]melt

(1012 at/g) (3He/4He)melt (R/RA)
Topographic shielding

factor
[3He]cosmo

(106 at/g)
Production rate
(at−1 ·g−1·y−1)

GB0 0.1175 0.38 ± 0.02 0.33 ± 0.02 0.83 0 —

MB0 0.4262 0.06 ± 0.01 0.24 ± 0.01 0.19 0 —

NB0 0.3534 0.26 ± 0.02 0.12 ± 0.01 1.60 0 —

S1 0.166 11.9 ± 0.71 0.62 ± 0.03 13.7 0.95 11.5 ± 0.75 246
S2 0.2532 5.60 ± 0.34 0.96 ± 0.05 4.17 0.96 5.2 ± 0.34 250
S3 0.17 4.77 ± 0.29 0.44 ± 0.02 7.72 0.98 4.4 ± 0.28 255
S4 0.0937 4.73 ± 0.28 5.87 ± 0.3 0.58 0.91 4.3 ± 0.28 237
S5 0.1765 6.01 ± 0.36 17.4 ± 0.9 0.25 0.93 5.6 ± 0.36 243
W1 0.1179 12.5 ± 0.75 1.75 ± 0.1 5.10 1.00 12.1 ± 0.79 254
P1 0.306 5.63 ± 0.34 1.14 ± 0.06 3.54 0.98 5.3 ± 0.34 255
P2 0.1716 7.62 ± 0.46 0.40 ± 0.02 13.6 0.86 7.2 ± 0.47 225
P3 0.3901 3.16 ± 0.19 0.15 ± 0.01 15.5 1.00 2.8 ± 0.18 260
P4 0.3849 5.40 ± 0.32 0.12 ± 0.01 32.1 1.00 5.0 ± 0.32 261
P5 0.1213 4.82 ± 0.29 1.10 ± 0.05 3.13 0.99 4.4 ± 0.29 254
P6 0.0379 6.05 ± 0.36 196 ± 10 0.02 0.85 5.7 ± 0.37 219
MB1 0.1121 8.21 ± 0.50 1.35 ± 0.07 4.36 0.98 8.1 ± 0.53 257
NB1 0.359 15.1 ± 0.90 0.24 ± 0.01 44.2 1.00 14.9 ± 0.97 279

Samples GB0, MB0, and NB0 are shielded samples for Gooding Butte Basalt (used to correct all canyon erosion data), McKinney Butte Basalt (used to correct
McKinney Butte Basalt age: MB1), and Notch Butte Basalt (used to correct Notch Butte Basalt age: NB1). Subscript “melt” is helium released by heating
powdered olivine under vacuum. [3He]cosmo is cosmogenic 3He after subtracting the shielded component (3He measured in relevant shielded sample). RA is the
atmospheric 3He/4He isotope ratio of 1.4 × 10−6 and at denotes atoms. Basalt had a bulk density of 2.8 ± 0.1 g/cm3. Error represents ±1 SD. Production rate was
calculated using the Lifton/Sato scaling scheme (1, 2) on the CRONUS 3He calculator (3, 4). Uncertainty in the shielded sample affects the absolute age but does
not change relative ages between canyon heads or calculated knickpoint retreat rates.
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Table S2. Sample locations and exposure ages

Sample Canyon Description Latitude (o) Longitude (o) Elevation (m) Age (ka)

S1 Stubby Rim notch 42.8677 −114.863 983 46.2 ± 2.9
S2 Stubby Rim notch 42.86765 −114.863 991 21.6 ± 1.3
S3 Stubby Rim notch 42.86766 −114.863 990 18.0 ± 1.1
S4 Stubby Side rim notch 42.86755 −114.866 992 19.1 ± 1.1
S5 Stubby Side rim notch 42.86758 −114.866 993 23.8 ± 1.4
W1 Woody Rim notch 42.85423 −114.881 972 47.2 ± 3.0
P1 Pointed Abandoned channel 42.86739 −114.859 991 21.2 ± 1.2
P2 Pointed Abandoned channel 42.8682 −114.858 995 32.5 ± 1.9
P3 Pointed Strath terrace 42.86777 −114.85 990 11.3 ± 0.7
P4 Pointed Abandoned channel 42.86727 −114.849 993 19.9 ± 1.1
P5 Pointed Strath terrace 42.86798 −114.851 984 18.2 ± 1.0
P6 Pointed Strath terrace 42.86783 −114.854 981 26.3 ± 1.5
MB1 McKinny Butte flow top 42.89116 −114.918 978 31.9 ± 1.9
NB1 Notch Butte flow top 42.82378 −114.706 1074 52.8 ± 3.4

Exposure ages were calculated using the CRONUS 3He Exposure Calculator (1, 2) using the Lifton/Sato scaling
scheme (3, 4) (see production rate in Table S1). Error on age represents 1 SD of external uncertainty as de-
termined by the exposure age calculator.
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