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Abstract Horseshoe waterfalls are ubiquitous in natural streams, bedrock canyons, and engineering
structures. Nevertheless, water flow patterns upstream of horseshoe waterfalls are poorly known and likely
differ from the better studied case of a one-dimensional linear step because of flow focusing into the horseshoe.
This is a significant knowledge gap because the hydraulics at waterfalls controls sediment transport and bedrock
incision, which can compromise the integrity of engineered structures and influence the evolution of river
canyons on Earth and Mars. Here we develop new semiempirical theory for the spatial acceleration of water
upstream of, and the cumulative discharge into, horseshoe canyons and waterfalls. To this end, we performed
110 numerical experiments by solving the 2-D depth-averaged shallow-water equations for a wide range
of flood depths, widths and discharges, and canyon lengths, widths and bed gradients. We show that the
upstream, normal flow Froude number is the dominant control on lateral flow focusing and acceleration into the
canyon head and that focusing is limited when the flood width is small compared to a cross-stream backwater
length scale. In addition, for sheet floodsmuch wider than the canyon, flow focusing into the canyon head leads
to reduced discharge (and drying in cases) across the canyon sidewalls, which is especially pronounced for
canyons that are much longer than they are wide. Our results provide new expectations for morphodynamic
feedbacks between floods and topography, and thus canyon formation.

1. Introduction

The hydraulics of waterfalls have been studied for over a century [e.g., Bresse, 1860], largely in response to
the development of dams and other engineered structures [e.g., Chanson, 1994, 1995, 2002] (Figure 1f). In
addition to their importance in hydraulic engineering, waterfalls play a major role in channel erosion [Flint,
1973; Dietrich and Dunne, 1993] and often form because of changes in climate, tectonics, and sea level
[Brush and Wolman, 1960; Leopold and Bull, 1979; Gardner, 1983; Howard et al., 1994; Bishop et al., 2005;
DiBiase et al., 2014; Lamb et al., 2014; Mackey et al., 2014]. Waterfalls on Earth (Figures 1d, 1g, and 1h)
[Gilbert, 1907], but also dry cataracts on Earth and Mars (Figures 1e, 1i, and 1j), are often horseshoe
shaped and create canyons with amphitheater-shaped heads [Bretz, 1969; Baker and Milton, 1974;
O’Connor, 1993; Lamb et al., 2008, 2014; Warner et al., 2010; DiBiase et al., 2014; Baynes et al., 2015]. This
geometry is observed at various scales, from decimeter-scale rills (Figure 1c) to meter-scale rivers and
channel heads (Figures 1a, 1b, and 1h) to hundreds of meters to kilometer-scale megaflood canyons
(Figures 1e, 1i, and 1j).

The horseshoe shape of waterfalls likely influences plan view flow patterns upstream by focusing water
toward the center of the horseshoe [e.g., Pasternack et al., 2006, 2007]. Water accelerates as it moves
toward a waterfall due to the reduction in pressure to atmospheric at the waterfall brink. Acceleration
and lateral flow convergence (i.e., flow focusing) control the velocity, discharge, and size of the jet
impinging in the plunge pool [Chanson, 1994; Flores-Cervantes et al., 2006; Tokyay and Yildiz, 2007], which
ultimately sets the pace of undercutting and potential collapse of the cliff face [Dietrich and Dunne, 1993;
Stein et al., 1993; Alonso et al., 2002; Stein and LaTray, 2002; Lamb et al., 2007]. Flow acceleration also
enhances the bed shear stress exerted by the flow at the waterfall brink [Stein and Julien, 1993; Haviv
et al., 2006] and thus promotes plucking and toppling of jointed rock [Annandale, 1995; Hancock et al.,
1998; Whipple et al., 2000; Coleman et al., 2003; Wohl, 2008; Chatanantavet and Parker, 2009; Lamb and
Dietrich, 2009; Dubinski and Wohl, 2013]. Moreover, larger flow discharges into canyon heads allow
transport of larger sediment and higher sediment transport rates downstream of the waterfall as long as
sediment is available [Meyer-Peter and Muller, 1948; Fernandez Luque and Van Beek, 1976], which exert
important controls on the stability of engineering dams and spillways, as well as canyon evolution over
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longer timescales [e.g., Lamb et al., 2006]. Petroff et al. [2011] argued that amphitheater-headed canyons
may arise from any erosional process for which erosion rate is proportional to plan view curvature of the
escarpment. Nevertheless, whether the erosion rate at waterfalls is proportional to the plan view
curvature is yet to be shown. Investigating the hydraulics of waterfall escarpments is a necessary first
step to mechanistic theories for canyon head and waterfall erosion [e.g., Lamb and Dietrich, 2009]. Lateral
focusing of flow upstream of waterfalls may also influence the development of drainage networks (e.g.,
canyon spacing) driven by upstream canyon head retreat [Izumi and Parker, 1995, 2000]. Despite its
importance, flow focusing upstream and into horseshoe waterfalls has yet to be studied systematically, a
knowledge gap we aim to address herein.

Most work to quantify flow acceleration upstream of waterfalls is for linear escarpments with no topographic
variation across the channel width and hence is essentially 1-D [Rouse, 1936, 1937, 1950; Delleur et al., 1956;
Rajaratnam and Muralidhar, 1968; Hager, 1983; Hager and Hutter, 1984]. The acceleration factor in 1-D is
defined as α1D =U0/Un, where U0 is the velocity at the waterfall brink and Un is the normal flow velocity in
the downstream direction [Rouse, 1936]. Normal flow is defined as steady and uniform flow (i.e., far

Figure 1. (a) Undercut horseshoe heads carved by overland flow in the Keanakāko’i thephra, Ka’ū desert, Kīlauea volcano, Hawai’i [e.g., Craddock et al., 2012]. (b) Gully
head near West Bijou Creek, Colorado, USA [e.g., Tucker et al., 2006; Rengers and Tucker, 2014]. (c) Undercut horseshoe-shaped rill carved by overland flow on
noncohesive soil in Gower Gulch, Death Valley. (d) Niagara Falls, New York, USA (Credit: Helen Filatova, released under CC-BY-SA-3.0). (e) View of the head of Stubby
Canyon, Malad Gorge State Park, Idaho, USA, from the canyon floor [Lamb et al., 2014]. (f) Horseshoe weir, Bath, UK (Credit: Jurgen Matern, released under CC-BY-SA-3.0).
(g) Selfoss waterfall on the Jökulsá á Fjöllum river, Iceland (Credit: Hansueli Krapf, released under CC-BY-SA-3.0). (h) Amphitheater-headed waterfall near Potholes
Reservoir, Potholes State Park, Washington, USA. (i) CTX mosaic of an amphitheater-shaped canyon at Echus Chasma (Credit: NASA). (j) HiRISE image of an amphitheater-
shaped cataract within Kasei Valles (PSP_002788_2010) [e.g., Williams and Malin, 2004].
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upstream, where flow is not affected by the
presence of the waterfall) [Chow, 1959].
Thus, α1D> 1 implies faster flow at the
waterfall brink due to spatial acceleration.

Natural horseshoe waterfalls and many
engineering structures depart from a purely
one-dimensional linear step, and flow
velocities at the waterfall brink and
discharge into canyon head likely differ
significantly from the 1-D case. In specific
applications, waterfall geometry has been
accounted for using sophisticated 3-D flow
simulations [e.g., Feurich et al., 2011].
However, no study has systematically
investigated how flow acceleration,
discharge into the canyon head, and lateral
flow focusing are affected by waterfall
planform geometry across a wide range
of canyon sizes, flood sizes, and Froude
numbers.

We aim to test the hypotheses that the
horseshoe geometry of waterfalls results
in flow accelerations that differ from the
1-D case and that flow discharge per unit
width into the canyon head is increased
owing to lateral flow focusing. To do this,
we performed a series of numerical
experiments. In section 2, we describe our
modeling objectives, identify potential
controls on flow focusing upstream of
horseshoe waterfalls, and explain our
modeling strategy. In section 3, we
describe the numerical model ANUGA
[Roberts et al., 2008, 2009] which is used to
investigate focusing of floods into canyons
of different sizes. In section 4, we
synthesize results of the experiments. In
section 5, we develop semiempirical

functional relationships for flow acceleration and cumulative head discharge. Last, we discuss application
to engineered horseshoe spillways and controls on waterfall formation and shape.

2. Modeling Objectives

Ourmodeling goal is to systematically evaluate the cumulative discharge and flowacceleration factor around the
brink of 2-D horseshoe waterfalls as a function of canyon width, length, upstream bed slope, flood width, flood
discharge, and normal flow Froude number. In particular, we seek a generic relationship for the flow acceleration
factor and flow discharge for 2-D waterfalls. To accomplish our goal, in this section, we define quantitative
metrics that will be used to define the effects of 2-D flow focusing. Next, we use dimensional analysis to
formulate quantitative hypotheses for the functional relationships between these metrics and the relevant
topographic and hydraulic parameters. Finally, we describe the modeling strategy and parameter space covered.

2.1. Two-Dimensional Flow Focusing Metrics

In 1-D open-channel flowwith constant channel width, the volumetric water discharge per unit width (q=Uh,
where h is flow depth) is conserved such that the discharge over the waterfall (q0 =U0h0) is equal to the

Figure 2. (a) Depth and (b) velocity profiles approaching a waterfall
composed of a 1-D linear step for subcritical flow (at xS/hn = 0,
where x is the streamwise distance as measured from the waterfall
and S is the bed slope). The solid black line (analytical 1-D backwater
solution, equation (6)) and the solid circles (as modeled from ANUGA, an
implementation of the 2-D depth-averaged shallow-water equations)
match and converge toward the normal flow depth and velocity at a
backwater length (x≈ Lb≈ hn/S) upstream of the waterfall. Dashed lines
respectively indicate normal flow depth and velocity.
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normal flow discharge upstream (qn=Unhn), and therefore, α1D =U0/Un= hn/h0 (Figure 2), where hn is the
normal flow depth and h0 is the flow depth at the waterfall brink. The acceleration factor in 1-D was found
to be well approximated by [Rouse, 1936; Hager, 1983]

α1D ≡
U0

Un
¼

1þ ε

Frn2=3
; if Frn < 1

Frn2 þ ε
Frn2

; if Frn≥1

8>>><
>>>:

(1)

where ε≈ 0.4 is an empirical constant that accounts for the deviation of pressure from hydrostatic at
the waterfall brink and Frn ¼ Un=

ffiffiffiffiffiffiffiffi
ghn

p
is the normal flow Froude number. For subcritical flows

(Frn< 1), equation (1) results in a Froude number at the waterfall brink, Fr0, of about 1.66 (i.e.,
Fr0 = α1D

3/2Frn = (1 + ε)3/2 ≈ 1.66) regardless of the upstream Froude number (Frn). For supercritical flow
upstream of the waterfall (Frn> 1), equation (1) results in an acceleration factor that approaches unity
(i.e., Fr0 ≈ Frn) as Frn increases.

Natural waterfall geometries can be complex. Because our goal is to study 2-D flow focusing as
generically as possible, and because an analysis of this sort has not been conducted before, here we
start with a simple geometric representation of waterfalls that remains faithful to the horseshoe shape
typical of many waterfalls, canyon heads, and engineered structures (Figure 3). We consider a canyon
of spatially uniform width w (measured in the y, or cross-slope, direction) and length l (measured in
the x, or downslope, direction) that has a semicircular head of radius w/2. Downslope and cross-slope
are directions defined by a fixed-Cartesian coordinate system, in which the x axis follows the
topographic slope at a constant gradient S, and thus the normal flow direction (Figure 3). Downstream
and cross-stream refer to directions along or perpendicular to a streamline and thus may deviate from
the x and y directions due to flow focusing. A sheet flood of width W is centered about the canyon
and has a constant discharge per unit width qn far upstream of the waterfall, where flow depth is
equal to the normal flow depth hn. There is no bed slope in the y direction, such that any flow
convergence toward the canyon is purely hydrodynamic. The drop height is sufficiently large such that
the flow upstream of the knickpoint is not affected by flow in the plunge pool [e.g., Bennett, 1999;
Bennett and Casali, 2001].

To quantify 2-D flow focusing, we define a local two-dimensional flow acceleration factor α2D≡Up/Un,
which is analogous to the acceleration factor in 1-D, except that here Up is defined in the direction

Figure 3. Plan view geometry of a flood (widthW) flowing downslope (S) toward a canyon (width w, length l). The head is
semicircular of radiusw/2. The unstructured triangular mesh used in themodel refines at the canyon brink to a resolution of
4 × 10�3Lb, where Lb is the backwater length (equation (7)). The red circle, green square, and blue triangle show the
locations of where we measure the acceleration factor at the head α �h

� �
, the head-to-wall junction α �w

� �
, and the toe α �t

� �
,

respectively. The angle θ is the azimuth as measured between the canyon centerline and any point around the canyon
head. Color coded is an example of flow depths normalized by the normal flow depth of the flood.
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perpendicular to the local canyon brink (because it is this component only that will contribute to discharge
into the canyon head), such that α2D is a local quantity that is likely to vary at different locations along the
waterfall brink. To highlight truly 2-D effects, throughout this paper, we will use an acceleration factor ratio
α*, defined as

α* ≡
α2D
α1D

(2)

such that α* = 1 corresponds to scenarios that show only 1-D flow acceleration.

To quantify changes in discharge to the waterfall as a result of lateral flow focusing, we define the local
discharge per unit width as q0 =Uph. The total discharge entering the semicircular canyon head is

then Qh ¼ ∫
π=2

θ¼�π=2

q0 θð Þw
2
dθ , where θ is the azimuth with respect to the canyon centerline. The

normalized cumulative head discharge q* is defined as the ratio of Qh to Qn, in which Qn= qnw is the
normal flow discharge flowing across a length w, that is,

q* ≡
Qh

Qn
¼ 1

qn
∫
π=2

θ¼0

q0 θð Þdθ (3)

A normalized cumulative head discharge of unity (q* = 1) corresponds to the case where no lateral flow
focusing is observed.

2.2. Dimensional Analysis and Hypotheses

To identify the controlling variables on flow acceleration (α*) and normalized cumulative flow discharge (q*),
we use dimensional analysis for flow acceleration at steady state. Consequently, the flow variables (velocities
and depth) around the canyon are time independent and fully determined by seven dimensional variables:
inflow discharge per unit width qn, acceleration of gravity g, normal flow depth hn, canyon width w, flood
width W, canyon length l, and bed slope S. This problem can be recast in terms of five dimensionless
parameters,

α*; q*ð Þ ¼ f Frn;w*;W*; l*; Sð Þ (4)

where w* ¼ w
W is the canyon width to flood width ratio, W* ¼ W�wð ÞS

2hn
is herein called the flood width

limitation factor, and l* ¼ lS
hn

is herein called the downslope backwater factor (Figure 4). The normal flow
depth can be defined as hn ¼ Cf Un

2

gS , where Cf ¼ Un
2

u2�
is a bed friction coefficient and u* is the bed shear

velocity [e.g., Chow, 1959].

Dimensional analysis does not dictate which dimensionless numbers are best suited to describe the physics
of flow focusing. In the rest of this section, we describe why the dimensionless numbers we picked make
intuitive sense and are likely relevant to flow focusing upstream of canyons.

The normal flow Froude number Frn ¼ Un=
ffiffiffiffiffiffiffiffi
ghn

p� �
describes the ratio of downstream oriented, normal flow

velocity to the shallow-water-wave speed. For Frn< 1, the velocity of shallow-water waves
ffiffiffiffiffiffiffiffi
ghn

p� �
is

greater than the flow velocity (Un), and thus, waves can propagate in all directions. For Frn> 1, the
velocity of waves is smaller than that of the flow, and waves can only propagate downstream and cross-
stream. Consequently, the Froude number sets the direction and distance at which hydraulic information
propagates and is thus expected to exert a major control on the degree to which water is focused
toward the canyon head.

The waterfall width relative to the flood width (w*) is important because it governs the proportion of water
available to be focused into the canyon. Figure 4 shows that narrow floods (w*≈ 1) will result in a canyon that
is mostly a horseshoe without sidewalls because of the fixed semicircular geometry of the head, at constant l*
andW*. Whenw*≪ 1, the canyon sidewalls make upmost of the canyon length, and we expect thatw* ceases
to be an important parameter.
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The lateral backwater limitation factor (W*) is the ratio of the half flood width (W�w)/2, measured from the

canyon sidewalls, to the backwater length scale Lb ¼ hn
S . The backwater length is a typical length scale over

which 1-D open-channel flows are affected by downstream boundary conditions [e.g., Chow, 1959]. Here
we wish to describe cross-slope backwater dynamics (i.e., lateral flow focusing); thus, Cf may be the more
relevant scale (rather than S) in determining a characteristic backwater length. This notwithstanding, for

normal flow, Frn ¼ Un=
ffiffiffiffiffiffiffiffi
ghn

p ¼ ffiffiffiffiffiffiffiffiffiffi
S=Cf

p
, and therefore S and Cf can be used interchangeably if Frn is an

independent parameter. Consequently, W*> 1 indicates that the half flooded width from the canyon
sidewalls is larger than the lateral backwater length (Figure 4) and thus that hydraulics at the canyon
sidewalls will not be affected by lateral backwater limitations due to the domain width. On the contrary,
when W*< 1, half of the flooded width is smaller than the lateral backwater length (Figure 4), and we
expect hydraulics at the canyon sidewalls will be affected by the boundaries of the flood, leading to
decreased α* and q*. With all other nondimensional parameters held constant, increasing W* also results
in canyons that are shorter with respect to the flood width if w* and l* are held constant (Figure 4). When
a canyon widens, w* increases and W* decreases such that both effects may act in concert to decrease α*
and q* at the canyon sidewalls.

We expect that the downslope backwater factor (l*) also controls the degree of drying along the canyon
sidewalls. Longer canyons with higher l* should capture more of the flood water at the canyon head or
shortly downslope, potentially leaving canyon sidewalls downslope of the canyon head dry. Figure 4
shows how canyon length and Lb vary for different values of l*.

Finally, we found that model simulations are exactly equivalent for different bed slopes
(5× 10�4< S< 5×10�2) if Frn and W* are held constant. That is, bed slope has no effect on flow focusing
independent of its role in determining the Froude number and the lateral backwater length scale.
Consequently, the number of independent variables in equation (4) is simplified from five to four.

Figure 4. Conceptual plan view cartoons of floods flowing over canyon escarpments to illustrate the dimensionless
parameters w*,W*, and l*. Blue lines delineate the flood width, while black lines delineate the waterfall brink. Red arrows
represent the backwater length scale Lb. The black arrows pointing to the right indicate that a given dimensionless parameter is
increased while all others are held constant. The other two independent dimensionless parameters, Frn and S, are not shown.
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2.3. Modeling Strategy and Parameter Space

We performed a series of numerical experiments
to test our hypotheses and to find functional
relationships for equation (4). We systematically
varied one of the four dimensionless parameters
(experiment series 1 to 4), while all the others
were set constant (Table 1), and extracted the
acceleration factors (normalized by their 1-D
counterpart α1D) at the center of the canyon head
( α �h ¼ α* θ ¼ 0ð Þ , red circle in Figure 3), at the

most upstream node of the sidewall ( α �w ¼ α*
θ ¼ π=2ð Þ , green square in Figure 3), and at the
toe of the canyon where it joins the downslope
escarpment ( α �t ¼ α* at the downslope end of

the canyon, blue triangle in Figure 3). We picked
these three locations as representative of different
canyon segments that are important for
understanding canyon widening (e.g., erosion at
the canyon head versus sidewall) and canyon
lengthening (e.g., erosion at the canyon head
versus toe), where erosion rate is likely a function
of flow velocity. Note that the acceleration factor
ratio at the toe α �t could be measured in both the

downslope and cross-slope directions. We chose
to report its values in the downslope (x) direction
because this is the direction that allows for a
comparison between the dynamics of the canyon
head and of the escarpment at the base of the
canyon.

Two numerical simulations are common to
experiment series 1 to 4, one subcritical (Frn=0.5)
and one supercritical (Frn=3). We refer to these
simulations as the base cases. The base cases
simulate a low-sloping (S=0.0075), wide sheet
flood (w* = 0.1) that has a lateral backwater
length which is shorter than the half flooded
width (W* = 4.5) and that pours over the brink of
a long canyon (l* = 30). Under these conditions,
we expect that mostly Froude number Frn will
influence the distribution of acceleration factor
ratios around the canyon head.

3. Numerical Methods

ANUGA is a finite-volume modeling suite that
solves the two-dimensional time-dependent
depth-averaged shallow-water equations on an
unstructured mesh of triangular cells where
friction is implemented using Manning’s equation
[Zoppou and Roberts, 1999; Roberts et al., 2008,
2009; Mungkasi and Roberts, 2011, 2013]. The
shallow-water equations describe conservation of
mass and conservation of momentum, where theTa
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forcing terms are gravity, friction, and pressure gradients. In the case of no bed slope in the y direction, the
conservation equations are

∂h
∂t

þ ∂ Uxhð Þ
∂x

þ ∂ Uyh
� �
∂y

¼ 0

∂ Uxhð Þ
∂t

þ ∂ U2
xh

� �
∂x

þ ∂ UxUyh
� �

∂y
¼ �gh

∂h
∂x

� ghS� CfUx

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2
x þ U2

y

q

∂ Uyh
� �
∂t

þ ∂ UxUyh
� �

∂x
þ
∂ U2

yh
� �
∂y

¼ �gh
∂h
∂y

� CfUy

h
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(5)

in which Ux and Uy are the depth-averaged velocities in the x and y directions, respectively, and Cf is related to
Manning’s n through Cf ¼ n2g

h1=3
.

These equations are derived by depth averaging the Navier-Stokes equations under the slender flow
approximation, which assumes that the vertical length scale is negligible compared to the horizontal. A
consequence of this assumption is that vertical pressure gradients are hydrostatic. The model
implementation is capable of reproducing wetting and drying, flow around structures, and hydraulic
jumps due to the ability of the upwind central scheme to accommodate discontinuities in the solution
[Kurganov et al., 2001].

Theoretically, the slender flow approximation does not hold at the waterfall brink because there pressure is not
hydrostatic. It was shown that the distance upstream of a waterfall at which pressure becomes hydrostatic

is about one to two critical depths hc (i.e., the depth in which Fr = 1; for the 1-D case, hc ¼ q2n=g
� �1=3

)

[Hager, 1983], which implies that the region that violates the shallow-water equations is limited to very
near the waterfall brink. Indeed, ANUGA has been successfully tested against dam break experiments
[Nielsen et al., 2005] and was able to reproduce with great accuracy water surfaces and bed shear stress
[Barnes and Baldock, 2006; Mungkasi and Roberts, 2013].

Despite that nonhydrostatic pressure at the brink is not accounted for in our modeling, its effect can be
incorporated by assuming that the same nonhydrostatic pressure captured in the 1-D acceleration factor
(equation (1)) holds for 2-D canyons. This approximation is likely to be true given that (1) the boundary
condition on pressure is the same all around the canyon brink—pressure at the waterfall is atmospheric
and (2) the length scale over which nonhydrostatic effects are important (a few critical depths) is much
smaller than the radius of curvature of most horseshoe waterfalls, such that enhanced flow acceleration
due to 2-D nonhydrostatic effects in such close proximity to the waterfall brink is unlikely to be
significant in the cross-stream direction. As a result, we expect the acceleration factor ratio α* to be
unchanged by nonhydrostatic effects, and it is therefore possible to calculate the acceleration for a 2-D
waterfall using our relationships for α*, combined with equation (1) that accounts for nonhydrostatic
effects in 1-D.

We also tested ANUGA against the solution to the one-dimensional backwater equation [e.g., Chow, 1959] for
subcritical flows (Figure 2) by solving

dh
dx

¼ S� Cf Fr2

1� Fr2
(6)

Like ANUGA, equation (6) also employs the slender flow approximation and does not capture nonhydrostatic
effects at the brink. The solution to equation (6) was computed with a predictor-corrector, central scheme
finite difference code [e.g., Butcher, 2008]. In the 1-D model, we set Frn= 0.99 at the downstream boundary to
simulate the water surface drawdown at the waterfall. In ANUGA, we extracted flow depths along a line at the
edge of a wide flood. Figure 2 shows that ANUGA is able to reproduce with good accuracy the water depth
and velocity for 1-D flow toward a waterfall with no lateral flow focusing.

The user-defined parameters for ANUGA are (1) the mesh (topography and spatially variable resolution), (2)
initial and boundary conditions, (3) Manning’s n, and (4) duration of the simulation, which are described
below. Time step intervals are internally determined from spatial resolution to enforce stability of
the solution.
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3.1. Domain Geometry and Resolution

We model the same canyon and flood system as described in section 2. The numerical domain was set to
optimize computational time. We only model half of the domain, because it is symmetric with respect to the
canyon axis. Depth and velocity gradients get steeper toward the brink (Figure 2). In order to capture these
steep gradients and better resolve the acceleration factor at the brink, we defined the cliff as a set of three
parallel lines, one downstream of the brink, one making up the brink, and one upstream of the brink. This
setup allows us to extract flow variables along a line that runs parallel to the brink but is slightly upstream of
it and thus not affected by numerical noise induced by the near-vertical step at the brink. For subcritical
input flows, these lines are separated by a small distance of 4 × 10�3Lb along the plane of the bed. To
estimate Lb, we used the analytical solution for subcritical flows in rectangular 1-D channels [Bresse, 1860],

Lb ¼ lim
r→1

hn
S

r � hc
hn

� 1� Fr2n
� �

Γ rð Þ � Γ
hc
hn

� �� �	 
� �
(7)

where Γ rð Þ ¼ 1
6 ln

r2þrþ1
r�1ð Þ2

� �
� 1ffiffi

3
p arctan

ffiffi
3

p
2rþ1

� �
and r ¼ h x¼Lbð Þ

hn
¼ 0:95 is the assumed ratio of flow depths at the

backwater extent [e.g., Lamb et al., 2012]. For supercritical flows, we set the distance between the lines that

define the cliff to be 4× 10�3hc/S. Outside of these lines, the resolution of the unstructured triangular mesh is

about 25 times the brink resolution, which allows for a less dense sampling of flow variables where spatial

gradients are less steep.

3.2. Initial and Boundary Conditions

The domain length upstream of the canyon head is set to Lb for subcritical floods and hc/S for supercritical
floods. This ensures that the flow depth at the inflow boundary is equal to the normal flow depth and thus
that brink vertices are not affected by the inflow boundary. The inflow boundary is set as a Dirichlet
condition on stage and momenta, where stage is set to the normal flow depth, the downslope
momentum is set to the desired discharge per unit width qn, and the cross-slope momentum is set to
zero. The side boundaries are reflective and frictionless, such that there is no flow across the edge of the
domain. Finally, the downstream boundary condition is located a few vertices downstream of the cliff and
is fully transmissive, that is, all flow is transmitted outside of the domain. The drop height is set to 10
critical depths. The initial depth is set to the normal flow depth hn everywhere, and the model is run in
time until steady state is reached. We detect steady state by computing the quadratic residual in flow
depth between consecutive time steps. When this residual becomes smaller than a threshold of 0.1%, the
experiment is stopped.

The error bars on flow depths and velocities induced by instabilities at the brink are at most of 0.5% and 2% of
the mean respectively as estimated from the variability of flow depth and velocity around the brink at 100
consecutive time steps. Error bars associated with numerical variability are smaller than symbol sizes in all
figures of the paper.

4. Results
4.1. Base Cases

The two base case simulations (see Table 1 for parameter values) correspond to the case where the canyon
head is not affected by the edges of the flood (w*≪ 1 andW*> 1) or the length of the canyon (l*≫ 1), that is,
they correspond to a sheet flood.

Figures 5a and 5b show the distribution of normalized discharge per unit width (Uh)/qn in plan view for the
subcritical and supercritical base cases, respectively. Black lines with arrows follow streamlines, that is, the
trajectories of flow particles within the flood. In both base cases, discharge per unit width is slightly
enhanced around the canyon head (i.e., (Uh)/qn ≥ 1) and is progressively depleted as water flows
downslope toward the canyon toe (i.e., (Uh)/qn< 1). The relative decrease in discharge per unit width
compared to the normal flow discharge per unit width is caused by the loss of water into the canyon
further upslope. The cross-slope extent of the relative decrease in discharge per unit width is larger in the
subcritical base case than in the supercritical base case and correlates with the plan view curvature of the
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streamlines. In the subcritical case, streamlines strongly deviate from pure downslope trajectories, and a
significant amount of water is focused into the canyon, which leads to a large decrease in normalized
discharge per unit width downslope. In the supercritical case, streamlines only deviate from pure
downslope trajectories close to the canyon walls, which leads to less focusing of water into the canyon,
and thus a lower decrease in normalized discharge per unit width downslope.

Figures 5c and 5d show normalized flow depth profiles along downslope (blue) and cross-slope (red)
transects for both base cases as located by the blue and red lines in Figures 5a and 5b. In the subcritical
case, water depth is equal to normal flow depth far from the waterfall brink in both profiles. Along the
downslope profile, water depth is drawn down to the critical depth hc at the waterfall due to spatial
acceleration of water toward the brink. The length scale over which water is drawn down scales with the
backwater length Lb∝ hn/S (equation (7)). Along the cross-slope profile, water depth is also drawn down
toward the waterfall brink, but over a longer spatial scale because there is no cross-slope topographic
gradient. In the supercritical case, the normal flow and critical depths are equal (i.e., hn= hc); that is, there
is no drawdown effect in the downslope direction. Nevertheless, a backwater profile develops in the cross-
slope direction, because cross-slope flow is subcritical, which results in the plan view curvature of the
streamlines in Figure 5b.

Figure 5. Normalized dischargemap for the (a) subcritical (Frn = 0.5,w* = 0.1,W* = 4.5, l* = 30, S= 0.0075) and (b) supercritical
(Frn = 3,w* = 0.1,W* = 4.5, l* = 30, S = 0.0075) base runs. Black lines with arrows show streamline directions. U is themagnitude

of flow velocity such thatU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2
x þ U2

y

q
. Inset in Figure 5a shows the zone around the canyon headwhere discharge per unit

width is enhanced from the 1-D case i:e:; Uh
qn
≥1

� �
highlighted in black. Discharge per unit width is not enhanced around the

head for supercritical floods. Normalized depth profiles for the same (c) subcritical and (d) supercritical base runs. The profiles

were measured along the canyon centerline (blue line in Figures 5a and 5b, blue symbols in Figures 5c and 5d) and along a

cross-slope profile (red line in Figures 5a and 5b, red symbols in Figures 5c and 5d).
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Figures 6a and 6b respectively show the acceleration factor ratio α* and normalized cumulative discharge
into the canyon as a function of normalized distance along the canyon rim for the subcritical (blue)
and supercritical (red) base cases. Both quantities are measured in the direction perpendicular to the
brink. The distance along the canyon rim is projected along the canyon centerline, so that a normalized
distance along the canyon rim of zero corresponds to the location of the tip of the canyon head (red
circle in Figure 3), while a value of unity corresponds to the location of the canyon wall (green square
in Figure 3). Consequently, the value of the cumulative head discharge q* is found by reading the value
of the normalized cumulative discharge into the canyon at an x axis value of unity. The last measured
acceleration factor ratios and normalized cumulative discharges correspond to the location of the
canyon toe (blue triangle in Figure 3). Note that the value of the acceleration factor ratio at the toe is
discontinuous because it is measured in the cross-slope direction along the sidewalls, and in the
downslope direction from the toe along the escarpment at the base of the canyon.

Figure 6a shows that at Frn=0.5, the velocity perpendicular to the brink progressively decreases along the
canyon rim from the center of the canyon head to the canyon sidewall because water is lost into the
canyon due to flow focusing. At Frn=3, the change in velocity along the canyon rim is more pronounced
due to higher momentum flow and less focusing of water into the canyon. Along the canyon sidewall, the
cross-slope velocity is constant and very small because water is not efficiently focused into the canyon.
Figure 6b shows that the cumulative discharge into the canyon is greater at Frn= 0.5 than at Frn= 3, again
because water is more efficiently deflected toward the canyon head for subcritical flows, such that q*> 1
in the subcritical case, while q*≈ 1 in the supercritical case. Moreover, discharge is significantly larger in
the cross-slope direction along the canyon walls in the subcritical case than in the supercritical case.
Nevertheless, flow focusing for supercritical normal flow is still finite because cross-slope Froude numbers
are subcritical.

In summary, subcritical normal flow leads to the development of both downslope and cross-slope backwater
profiles, which deflects streamlines and enhances flow focusing, α* and q*. In contrast, there is no downslope
backwater profile for supercritical normal flow, and only cross-slope backwater profiles contribute to spatial
acceleration of water.

4.2. Experiment Series 1: Froude Number Frn

Experiment series 1 was designed to investigate sheet floods of varying Froude number Frn. We varied
Froude number from 0.4 to 5 (Table 1) and used w* = 0.1, W* = 4.5, l* = 30, and S= 0.0075 (as in the base
cases). This range of Froude numbers is typical of large-scale floods [Costa, 1987]. These floods are much
wider than the canyon width, and the canyons are long.

Figure 6. (a) Acceleration factor ratio α* and (b) normalized cumulative discharge along the rim of the canyon for the
base runs. The abscissa is the distance measured along the spatial x axis (Figure 3) from the center of the canyon head,
normalized by w/2, such that this distance equals unity at the head-to-wall junction (i.e., where θ = π/2). The normalized
cumulative head discharge q* is thus found where 2x/w equals unity. Red circles indicate the canyon head center, green
squares the head-to-wall junction, and blue triangles the canyon toe (Figure 3). Note that the acceleration factor at the toe
(blue triangle) is measured in the downslope (x) direction and hence is offset from the profile that shows acceleration in
cross-slope (y) direction at the corner junction between the canyon and the escarpment.

Journal of Geophysical Research: Earth Surface 10.1002/2014JF003412

LAPOTRE AND LAMB FLOOD HYDRAULICS UPSTREAM OF WATERFALLS 1237



In Figure 7, we show the value of α* at three locations along the canyon brink—the center of the canyon head,
the junction between the canyon head and the sidewall, and the junction between the canyon sidewall and the
downstream escarpment (i.e., the canyon toe) (Figure 3). The acceleration factor at the canyon head is
roughly equal to the 1-D acceleration factor (i.e., α �h ≈1), with a small enhancement of acceleration at

lower Froude numbers (Figure 7a). For example, α �h ¼ 1:03 at Frn= 0.4. The acceleration factor at the

wall is smaller than at the head α �w < 1
� �

, but it is still significant for low Frn and decreases to near zero at

high Froude numbers. Note that for a 1-D step, there is no cross-slope acceleration (i.e., α �w ¼ 0 ). The

acceleration factor ratio at the toe α �t is lower than that at the wall (Figure 7a) and increases with Froude

number. Flow focusing results in an enhancement of discharge to the canyon head of up to 34% for subcritical
flows. The cumulative discharge over the waterfall head q* decreases and eventually reaches unity as the
upstream Froude number is increased (Figure 7b).

We interpret these trends as the result of higher Froude numbers producing streamlines that are oriented
nearly parallel to the bed slope, whereas at lower Froude numbers more water is focused toward the canyon
(e.g., Figure 5). The cross-slope component of flow velocity decreases as Froude number is increased,
decreasing the velocity perpendicular to the sidewall brink. Consequently, higher Froude numbers imply that
less water is lost into the canyon and more water reaches the toe, thus increasing the acceleration factor α �t
at the toe (e.g., Figure 5). Importantly, for critical and supercritical upstream Froude numbers Frn≥ 1, the
acceleration factor ratio at the canyon sidewall is nonzero because flow in the cross-slope direction is still
subcritical. Normal Froude number Frnmust exceed ~5 for cross-slope flow into the canyon head to be negligible.

4.3. Experiment Series 2: Waterfall Width to Flood Width Ratio w*

In experiment series 2, we varied the canyonwidth to floodwidth ratiow* from0.1 to 0.9 for two different Froude
numbers (Frn=0.5 and Frn=3), with all other parameters held to the base case values (W*=4.5, l*=30, and
S=0.0075, Table 1). By definition, w* can only vary between zero (no canyon) and unity (fully channelized
canyon). We expect that wider canyons will have decreased acceleration at their walls due to the increased
amount of water lost to the head. As canyons widen while keeping a constant length, the horseshoe head
progressively occupies a larger portion of the flood width, but also of the total canyon length (Figure 4). The
latter effect is a direct consequence of the assumption that the canyon head is semicircular.

For subcritical floods, the acceleration factor ratio is not affected by w* around the canyon head, but it is
lower along the walls and decreases to zero at the toe (drying) as w* increases (Figures 8a and 9a). This
decrease results from a geometric effect—as w* increases, the horseshoe head occupies more of the total
flood width and captures an increasing amount of water. In the end member case of a semicircular canyon
(w* = 1), the wall and the toe are at the same location, the flooded width adjacent to the wall/toe is zero,
and we thus expect the acceleration there to drop to zero in the cross-slope direction.

Figure 7. (a) Acceleration factor ratio α* and (b) normalized cumulative head discharge q* as a function of normal flow Froude
number Frn. The other parameters were held constant (w* = 0.1,W* = 4.5, l* = 30, S = 0.0075). Figure 7a shows the acceleration
factor ratios along the brink of the canyon at the centerline of the head, junction of the head and sidewalls (“wall”), and
junction between the canyon sidewall and the base of the escarpment (“toe”) (Figure 3). The stars represent the subcritical
(Frn = 0.5) and supercritical (Frn= 3) base runs. Thin dashed lines are the best fit solutions discussed in section 5.
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Figure 8. (a) Acceleration factor ratio α* and (b) normalized cumulative discharge along the brink of the canyon. The abscissa
is the distance measured along the spatial x axis (Figure 3) from the center of the canyon head, normalized by w/2, such that
this distance equals unity at the head-to-wall junction (i.e., where θ = π/2). Blue lines are subcritical runs, whereas red lines
are supercritical runs. Thinner lines correspond to the base runs (with w* = 0.1, Figure 5), while thicker lines have a canyon
width to flood width ratio of w* = 0.75. Red circles indicate the canyon head center, green squares the head-to-wall junction,
and blue triangles the canyon toe (Figure 3). Note that the acceleration factor at the toe (blue triangle) is measured in the
downslope (x) direction and hence is offset from the profile that shows acceleration in cross-slope (y) direction at the corner
junction between the canyon and the escarpment.

Figure 9. Acceleration factor ratio α* as a function of the canyon width to flood width ratio w* for (a) subcritical flows
(Frn = 0.5) and (b) supercritical flows (Frn= 3). (c) Normalized cumulative head discharge q* as a function of the canyon
width to flood width ratio w* for both subcritical (Frn= 0.5) and supercritical flows (Frn = 3). The other parameters are held
constant (W* = 4.5, l* = 30, S= 0.0075). Stars represent the base case simulations. Dashed lines are the best fit solutions discussed
in section 5. Sketches at the bottom of Figure 9c illustrate how plan view geometry varies as w* increases (Figure 4).
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For supercritical floods, the acceleration factor ratio does not vary much around the head and the wall
(Figure 8a). Figure 9b shows that the acceleration factor ratio is greater at the toe than at the wall, which we
interpret as the result of a decreased cross-slope component of velocity for supercritical floods (section 4.2).
The acceleration factor ratio increases at the toe with increasing w* because the canyon sidewalls are shorter
and a smaller fraction of the water is lost over the brink along the sidewalls (Figure 8b).

For subcritical floods, the cumulative head discharge q* decreases with increasing relative waterfall width (w*),
whereas q* is constant for supercritical floods (Figures 8b and 9c). These trends correlate with the acceleration
factor ratio at the wall α �w . In subcritical cases, an increasingly wide horseshoe head captures more of the total

available water, leading to smaller flow depths near the wall, and thus decreased lateral backwater effects. In
supercritical cases, flow depth does not significantly deviate from its upstream value away from the canyon
wall, such that lateral backwater effects are constant as w* increases. The cumulative head discharge q*
should plateau at unity in both subcritical and supercritical cases because all of the water enters into the
head at w* =1 (Figure 9c).

4.4. Experiment Series 3: Flood Width Limitation Factor W*

In experiment series 3, we investigated the effect of varying lateral backwater lengths for a given flood width.
We thus varied the flood width limitation factor W* from 0.12 to 15 for two different Froude numbers
(Frn= 0.5 and Frn= 3), w* = 0.1, l* = 30, and S= 0.0075 (Table 1). Like the base cases, this corresponds to the
case of a wide flood pouring over the brink of a long canyon. In theory, W* can vary from values close to
zero, when the lateral backwater length is very long compared to the flood width, to virtually infinity when
the flood is very wide compared to the backwater length.

Figure 10a shows that the acceleration factor ratio decreases at the wall for lower W*. The acceleration
factor ratio at the toe decreases to zero at W* = 0.25 for both subcritical and supercritical flows,
indicating complete drying. Interestingly, acceleration is locally enhanced along the walls downstream
of the canyon head for small W* (Figure 10a). For this case, the canyon head radius is much smaller
than the length scale over which flow convergence occurs (Lb). Thus, for W*≈ 0.25, the zone of
maximum flow convergence is pushed downstream of the canyon head. Overall normalized cumulative
discharge into the canyon is enhanced for both subcritical and supercritical floods when W* is large.
Nevertheless, the normalized cumulative head discharge q* is only enhanced at large W* in the
subcritical case (Figure 10b).

Figure 11a shows over a wider range in parameter space how the acceleration factor ratios at the head,
wall, and toe vary as W* increases for a subcritical flood. The acceleration factor ratio at the wall is

Figure 10. (a) Acceleration factor ratio α* and (b) normalized cumulative discharge along the brink of the canyon. The abscissa
is the distance measured along the spatial x axis (Figure 3) from the center of the canyon head, normalized by w/2, such that
this distance equals unity at the head-to-wall junction (i.e., where θ = π/2). Blue lines are subcritical runs, whereas red lines
are supercritical runs. Thinner lines correspond to the base runs (with W* = 4.5, Figure 5), while thicker lines have a higher
lateral backwater parameter (W* = 0.25). Red circles indicate the canyon head center, green squares the head-to-wall junction,
and blue triangles the canyon toe (Figure 3). Note that the acceleration factor at the toe (blue triangle) is measured in the
downslope (x) direction and hence is offset from the profile that shows acceleration in cross-slope (y) direction at the corner
junction between the canyon and the escarpment.
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maximum at W*≈ 1. We interpret this transition at W* ≈ 1 as the interplay of flood width limitations
(W*< 1) and enhanced flow focusing upstream of the head-to-wall junction (W*> 1). For W*< 1, flow
focusing into the canyon head is limited by the flood width because the backwater length is larger than
the flood width. In addition, the zone of maximum flow convergence may be pushed downstream of
the head-to-wall junction as described above (Figure 10a). For large W* and fixed w*, the radius of the
canyon head becomes large with respect to the backwater length, which again is the characteristic
length over which flow focusing occurs. Thus, we interpret the reduction in α �w for large W* to be

caused by enhanced flow capture in the canyon head, upstream of the head-to-wall junction. Analogously
to the acceleration factor ratio at the wall, cumulative head discharge q* is maximum at W*≈ 1 for subcritical
flows (Figure 11c).

Similar to the decrease in acceleration factor ratio at the wall, the acceleration factor ratio at the toe decreases
asW* gets smaller and the toe eventually dries atW*≈ 0.5. However, unlike α �w, the acceleration factor ratio at

the toe does not decrease with increasing W* because of the coincident shortening of the canyon which
minimizes flow loss upstream (Figure 4).

For supercritical flows, the acceleration factor ratio at the head and wall (Figure 11b) and cumulative
head discharge (Figure 11c) are roughly constant, which we interpret as the result of the decreased

Figure 11. Acceleration factor ratio α* as a function of the lateral backwater parameter W* for (a) subcritical flows
(Frn = 0.5) and (b) supercritical flows (Frn = 3). (c) Normalized cumulative head discharge q* as a function of the lateral
backwater parameter W* for both subcritical (Frn = 0.5) and supercritical flows (Frn = 3). The other parameters are
held constant (w* = 0.1, l* = 30, S = 0.0075). Stars represent the base case simulations. Dashed lines are the best fit
solutions discussed in section 5. Sketches at the bottom of Figure 11c illustrate how plan view geometry varies as W*
increases (Figure 4).
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importance of lateral backwater effects for supercritical floods. However, the acceleration factor ratio
at the toe integrates the backwater effects all along the canyon sidewalls upslope of the toe,
and thus, α �t decreases with decreasing W* due to water lost to the canyon and drying at the toe
for W*< 0.3.

4.5. Experiment Series 4: Downslope Backwater Parameter l*

In experiment series 4, we investigated the effect of canyon lengthening. We varied the downslope
backwater parameter l* between 0.55 and 30 for two different Froude numbers (Frn=0.5 and Frn=3), with
all other parameters set to the base case values (w* = 0.1, W* = 4.5, and S= 0.0075, Table 1).

As expected, the acceleration factor ratio around the head and walls does not vary for either subcritical or
supercritical floods as l* increases with all other parameters held constant (Figure 12a). Similarly,
cumulative head discharge does not vary with l* and therefore is not shown.

Figure 12. (a) Acceleration factor ratio α* along the brink of the canyon. The abscissa is the distance measured along
the spatial x axis (Figure 3) from the center of the canyon head, normalized by w/2, such that this distance equals
unity at the head-to-wall junction (i.e., where θ = π/2). Blue lines are subcritical runs, whereas red lines are supercritical
runs. Thinner lines correspond to the base runs (with l* = 30, Figure 5), while thicker lines have a canyon width to
flood width ratio of l* = 0.55. Red circles indicate the canyon head center, green squares the head-to-wall junction,
and blue triangles the canyon toe (Figure 3). Note that the acceleration factor at the toe (blue triangle) is measured
in the downslope (x) direction and hence is offset from the profile that shows acceleration in cross-slope (y)
direction at the corner junction between the canyon and the escarpment. Figures 12b and 12c show the normalized
acceleration factor as a function of the downslope backwater parameter l* for subcritical flows (Frn = 0.5) and
supercritical flows (Frn = 3), respectively. Stars represent the base case simulations. Dashed lines are the best fit
solutions discussed in section 5. Sketches at the bottom of Figure 12c illustrate how plan view geometry varies as l*
increases (Figure 4).
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In contrast to the head and sidewalls, the
acceleration factor at the toe is larger for
relatively short canyons (smaller l*). We
interpret this trend as the result of water
pouring over a shorter sidewall distance,
and thus, less water is lost along the
walls for smaller canyons (Figure 12a).
For subcritical floods, we observe a rapid
decrease in acceleration at the toe as
canyons lengthen (Figure 12b). For
supercritical floods, the reduction in
acceleration factor ratio at the toe with
increasing l* is more gradual due to
less water lost into the canyon upstream
(Figure 12c).

5. Semiempirical Approximations

Because our 2-D hydraulic simulations are
computationally demanding, it is of inter-
est to obtain semiempirical approxima-
tions to our results in order to predict
the acceleration factor ratios and cumula-
tive head discharge, α �h, α �w, α �t , and q*, as

a function of Frn, w*, W*, and l* in a way
analogous to equation (1). All parameters
affect the acceleration factor ratios
roughly independently. We were able to
fit the data by addressing each parameter
separately in the regime where other

parameters do not matter through multiple nonlinear regressions. The fit relationships are given in
Appendix A.

We first corrected the data for Froude number Frn by dividing the data by exponential or power function
fits to experiment series 1. We then identified and ranked by decreasing importance the other
dimensionless parameters driving the remaining variance (w* then W* for α �w and q*; l* then W* then w*

for α �t ). Finally, we sequentially corrected for the variance induced by each of the ranked parameters by

further dividing the data by the corresponding power law fits. When different functional fits were
needed for different parameter ranges, we attempted to impose continuity of the fit across the range
boundaries. Nevertheless, discontinuities in the fits still arise in cases because we did not model every
possible combination of parameters.

Figure 13 shows a comparison between the acceleration factor ratios and cumulative head discharge as pre-
dicted by ANUGA and the best fit functions we derived. The root mean square error (RMS) between the fits
and the data is equal to 1.1%. In order to test the ability of the semiempirical fits to predict acceleration factor ratios
and cumulative head discharge for parameter values that were not used when performing the fits, we designed a
set of 45 additional test simulations that explored various other combinations of parameter values (Table 1). The fit
functions are successful at predicting most of the additional simulations (Figure 13). The functions, however, did
not fit as well α �w for supercritical floods at canyons that are relatively short and wide (shaded in gray in

Figure 13), a configuration we did not explore extensively. The RMS between the additional test data and their fits
is equal to 2.2% when the latter simulations are excluded and to 4.1% when they are included.

Because Frn,W*, and l* have no upper limit by definition, onemight be interested in a case outside our explored
parameter space. In most applications, the Froude number Frn falls within our modeled range. Higher Froude
numbers would have acceleration factor ratios of unity at the head and zero at the wall due to the near absence

Figure 13. Best fit versus model data (acceleration factor ratios at
the head α �h , wall α �w , and toe α �t and normalized cumulative
head discharge q*). Large symbols show runs that were used for
the best fit, whereas small ones show runs that were not and have
two parameters or more that differ from the base runs (total of
4 × 110 = 440 symbols). The thin black lines highlight ±25%, and the
intermediate ones indicate ±10%. A perfect fit falls on the 1:1 thick
black line. Note that 180 of these symbols represent the test runs
(those not taken into account to derive the semiempirical fits), and
their vast majority fall within ±10% of the values predicted by
equations (A1)–(A8). Toe accelerations highlighted in gray correspond
to wide (w* ≥ 0.75), short canyons (l* ≤ 6) in supercritical floods. In
this configuration, acceleration at the toe is high due to the high
downslope inertia of the flow and the little amount of water lost to the
walls in the cross-slope direction. Our scaling underestimates the
acceleration at the toe in this configuration.
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of flow focusing. At the toe, its value would still vary greatly with the amount of water lost along the canyon
sidewalls, and thus with the downslope backwater parameter l*. The flood width limitation factor W* does
not significantly affect the hydraulics at values higher than the range we tested (at W* = 5, acceleration factor
ratios at the wall do not vary significantly, and normalized cumulative head discharge decreases to unity). In
cases where Frn< 1 and W* are very small, one can assume that α �w and α �t are small. Finally, almost

no water is left at the toe of very long canyons (l* ≫ 1), such that α �t can be assumed to be zero. Most

of these end member cases are reproduced by the fits. When the fits predict negative values for accelera-
tion factor ratios, they should be set to zero.

6. Discussion
6.1. Flow Regimes

Figure 14 illustrates how the best fit functions can be used to predict the acceleration factor around the brink of
horseshoe waterfalls that widen and lengthen. Because the normalizing denominator for the acceleration
factor ratios (α1D, equation (1)) and the cumulative head discharge (qnw/2) can be calculated
independently, one can invert for dimensional properties of the flow from the best fit equations
(equations (A1)–(A8)).

The effect of increasing the canyon width is best described by the acceleration factor ratio at the wall α �w
and the cumulative head discharge q* (Figures 14a and 14b). In natural systems with a normal flow depth
that is constant over time, canyon widening will not only cause w* to increase but also cause W* to decrease,
and flow around the canyon brink will be affected by lateral backwater effects. Figures 14a and 14b show how

Figure 14. (a) Wall acceleration factor ratio α �w and (b) normalized cumulative head discharge q* contours for the case of
canyon widening, where both the canyon-to-flood width ratio w* and the lateral backwater limitation factor W* change
(l* = 30, S = 0.0075). The shaded area shows the parameter space where cumulative head discharge is enhanced (q* ≥ 1). As
a canyon widens, one moves upward on the plots. (c) Toe acceleration factor ratio α �t for the case of canyon lengthening
(w* = 0.1, W* = 4.5, S = 0.0075). As a canyon lengthens, l* increases and one moves upward on the plot. Contours are
determined from the semiempirical fits (equations (A1)–(A8)). Dashed lines represent expected trends where semiempirical
fits produce discontinuities.
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α �w and q* can be summarized in several flow regimes with coincident changes in w* and W*. In the

subcritical regime (Frn< 1) with focusing not limited by the width of the flood (W*> 1), acceleration at
the wall is mostly a function of Froude number, and cumulative head discharge is enhanced. As the
canyon widens (W*< 1), acceleration at the wall is mostly a function of canyon width and α �w
decreases. Likewise, with canyon widening, the cumulative head discharge goes from enhanced with
respect to the 1-D case (q*> 1) to normal (q* = 1). In the supercritical regime, acceleration at the wall is
a function of the flood Froude number only and decreases with increasing Frn. Head discharge for
supercritical floods is roughly equal to the corresponding 1-D discharge.

Canyon lengthening affects mostly the acceleration factor at the toeα �t (Figure 14c). Acceleration at the toe is

reduced with larger canyons; however, this effect weakens at higher Froude numbers.

6.2. Engineering Applications

Hydraulic engineers typically employ full 3-D numerical models to study and design specific spillways with
complex geometries [e.g., Feurich et al., 2011]. Nevertheless, our results have implications for the early
stages of designing spillways. A first important result of our modeling is that the acceleration factor ratio
at the head of a horseshoe waterfall is only enhanced by less than 4% compared to the 1-D case as long
as there is no cross-stream topographic gradient (e.g., Figure 7). Consequently, in applications where
the required precision is of a few percent, it can be assumed that acceleration at the head can be
approximated by equation (1).

Moreover, understanding flow focusing is essential to optimize the discharge into the head of the canyon.
For example, one might need to minimize erosion at the base of a horseshoe spillway. This can be
accomplished by decreasing the amount of flow focusing toward the canyon, and thus the velocity and
width of the jet impinging the plunge pool. If flow focusing is minimized, by making the canyon as wide
as the flood (w*≈ 1), the discharge per unit width at the center of the spillway will be that of the linear
escarpment, and the discharge will be lower everywhere else along the brink, stabilizing the sidewalls. If
enhanced discharge is desired to increase the generated power of a water turbine, a horseshoe spillway
should be narrower than the total flood width (w*≪ 1) such that flow focusing is maximum at the tip of
the horseshoe (e.g., W*≈ 1). Our results suggest that this design can enhance discharge by up to about
35% (e.g., Figure 7). Because hydropower is proportional to discharge [e.g., Sayers, 1990], such a design
could increase energy production.

6.3. Implications for the Shape of Canyon Heads and Canyon Dynamics

Waterfalls retreat upstream as a consequence of erosion at the knickpoint, causing formation of canyons.
Erosion occurs either through undercutting in the plunge pool or through plucking and toppling of rock
blocks upstream of the brink [e.g., Gilbert, 1907; Haviv et al., 2006; Lamb et al., 2006, 2007; Lamb and
Dietrich, 2009; Mackey et al., 2014]. Undercutting occurs as a result of scouring of rocks where the water jet
impinges the plunge pool, by the combined mechanical action of water and transported sediments [e.g.,
Stein and Julien, 1993; Flores-Cervantes et al., 2006]. In particular, Flores-Cervantes et al. [2006] showed that
bed shear stress at the base of the jet increases with flow velocity at the brink U0. Moreover, higher water
discharges cause higher sediment capacity of the flow [e.g., Meyer-Peter and Muller, 1948; Fernandez Luque
and Van Beek, 1976], which enhances plunge pool erosion. Consequently, more focusing toward the
canyon head suggests that more erosional work is accomplished by water and sediment. Enhanced
erosion at the head combined with drying of the sidewalls promotes upstream propagation of the canyon
head as opposed to canyon widening. Our results indicate that higher head discharges are obtained for
lower Froude numbers, and lateral backwater lengths smaller than the half flooded width.

Plucking and toppling occur through the action of bed shear stress applied by water flow upstream of the
waterfall brink [e.g., Coleman et al., 2003; Chatanantavet and Parker, 2009]. The bed shear stress at the
brink is given by

τb ¼ ρCfUp
2 ¼ ρCfα*2Un

2 (8)

where ρ is the density of water and thus scales with the acceleration factor ratio squared. Assuming that
erosion rate is proportional to bed shear stress to some positive power [e.g., Howard and Kerby, 1983], higher
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acceleration factor ratios should lead to higher erosion rate [Stein and Julien, 1993; Haviv et al., 2006; Lamb
and Dietrich, 2009].

Our modeling suggests that flow focusing enhances acceleration factor ratios around the head of canyons for
low Froude numbers, and low lateral backwater lengths (equations (A1), (A2), (A4), and (A5)), and decreases
acceleration factor ratios along the walls and toes as canyons lengthen and widen (equations (A2)–(A7)). If we
make the assumption that erosion only occurs when a certain threshold shear stress is surpassed [e.g., Lamb
and Dietrich, 2009], erosion is more likely to prevail where α* is higher. Consequently, different
combinations of bed shear stress at the head and at the head-to-wall junction may determine whether
the canyon widens or narrows, while bed shear stress at the head and the toe may control whether the
canyon grows or shrinks.

We showed that plan view curvature of the canyon rim drives cross-slope flow, and thus convergence of the
flood waters toward the canyon. Flow focusing can in turn drive the creation of more curvature. Indeed,
variations in flow velocities around the brink may lead to variable erosion rates around the brink, with
higher erosion rates at the canyon head where velocities are enhanced and decreased erosion rates along
the walls where velocities are decreased [e.g., Stein and Julien, 1993; Lamb and Dietrich, 2009].
Consequently, feedbacks between flood hydraulics and canyon form may be similar to those observed in
the formation of amphitheater heads by groundwater sapping in sand [Howard and McLane, 1988] and
may help to explain the origin of amphitheater-headed canyons in competent rock [e.g., Lamb et al., 2006,
2014] (Figure 1). It is likely that canyon head shape differs for different degrees of focusing and thus might
be a function of flood attributes, such as Froude number Frn and flood width limitation factor W*. This
conclusion modifies that of Petroff et al. [2011], who proposed that erosion rates are proportional to local
plan view curvature of a canyon head. Our results suggest that erosion may be enhanced at the center of
the canyon head due to flow focusing even in the absence of spatial changes in curvature (as in our case
of a semicircular head).

7. Conclusion

Horseshoe-shaped waterfalls modify the flow patterns upstream of waterfalls, flow acceleration at the
waterfall brink, and cumulative discharge into the waterfall. The distribution of the acceleration factor
around the canyon brink is mainly controlled by the normal flow Froude number, the width of the flood
compared to its lateral backwater length and the canyon width, and the downslope length of the canyon
relative to the backwater length.

In the case of a sheet flood, that is, when the canyon is much narrower than the flood and lateral
backwater effects do not limit flow focusing, the acceleration factor is entirely determined by the
Froude number and the length of the canyon. Higher Froude numbers decrease the amount of
focusing and thus decrease the acceleration factor around the canyon sidewalls (i.e., α �w →0 for

Frn ≫ 1), increase it at the canyon toe, and lower the cumulative discharge into the canyon head.
Longer canyons lose more water along their sidewalls than shorter canyons and thus have decreased
acceleration factors at the canyon toe.

For nonsheet floods, the flow patterns are more complicated due to the influence of boundaries that
limit flow focusing into the waterfall. Generally, wider waterfalls and/or higher lateral backwater
lengths decrease both the acceleration factor around the canyon head and walls and the cumulative
discharge into the canyon head. When the canyon is confined within the full width of the flood
(w* ≈ 1), the walls and the toe are at the same location, and the acceleration factor in both the

cross-slope and downslope directions is zero α �w ≈α �t ≈0
� �

. Finally, when the lateral backwater

limitation factor is much smaller than unity (W* ≪ 1), the acceleration factor along the walls tends to

zero α �w →0
� �

.

The semiempirical relationships we derived to relate acceleration and discharge around the brink of
waterfalls may provide some guidance during the early stages of spillway design and optimization. These
relationships also provide a quantitative understanding of flow focusing that can be used to help explain
the shape of waterfalls, as well as their evolution.
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Appendix A: Fit Relationships

The acceleration factor ratio at the head α �h decreases with Froude number Frn for subcritical floods and is

roughly equal to unity for supercritical floods.

α �
h
¼ 1þ 0:05 1� Frnð Þ1:65 for Frn < 1

1 for Frn≥1

(
(A1)

In the case of a sheet flood (w*≪ 1 and W*> 1), the acceleration factor ratio at the wall α �w decreases with
Froude number Frn, and the decrease is steeper for Frn between 1 and 3.

α �
w;sf

¼ 1:47exp � Frn þ 1:18
1:58

� �2
" #

� 0:53exp � Frn þ 0:03
0:53

� �2
" #

þ 85550 exp � Frn þ 51
14:7

� �2
" #

(A2)

For a sheet flood, the acceleration factor ratio at the toe α �t increases with Froude number Frn and decreases

with the downslope backwater parameter l*.

α �
t;sf

¼ 2:08Frn0:11 � 1:76
� �

3:68l��0:31
� �

for Frn < 1

2:08Frn0:11 � 1:76
� �

2:02� 0:29l�0:35� �
for Frn≥1

(
(A3)

For subcritical nonsheet floods, the acceleration factor at the wall α �w decreases with the canyon width to

flood width ratio w* and increases with the flood width limitation factor W* (as long as W*< 1). For
supercritical nonsheet floods, the acceleration factor ratio at the wall α �w slightly increases with canyon

width to flood width ratio w*.

α �
w
¼

α �
w;sf

1� w*ð Þ0:22G1 for Frn < 1

α �
w;sf

for Frn≥1

8<
: (A4)

in which

G1 ¼
1:06� 0:38 1�W*ð Þ1:41 �

forW* < 1

1:07� 7:72�10�3W*
 �

for W*≥1

(
(A5)

The acceleration factor ratio at the toe α �t for subcritical nonsheet floods increases with w* and decreases

with W*. For supercritical nonsheet floods, the acceleration factor ratio at the toe α �t increases with both

w* and W*.

α �
t
¼

α �
t;sf

0:87� 21:75w�4:65� �
1:18 exp 0:01W*ð Þ � 1:39 exp �0:38W*ð Þ½ � for Frn < 1

α �
t;sf

1þ 0:68w�5:09� �
1:07� 1:21exp �0:49W*ð Þ½ � for Frn≥1

8<
: (A6)

Normalized cumulative head discharge q* decreases with Froude number Frn, increases and then decreases
with flood width limitation factor W*, and either decreases or is constant with canyon width to flood width
ratio w* depending on whether the flood is subcritical or supercritical.

q* ¼ 1þ 0:79exp �2:16Frnð Þ½ � 1:14� 0:33w�0:37� �
G2 for Frn < 1

1þ 0:79exp �2:16Frnð Þ½ � for Frn≥1

(
(A7)

in which

G2 ¼ 1:03� 0:16 1�W*ð Þ2:85 forW* < 1

1:08� 0:04W�0:31 forW*≥1

(
(A8)
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Note that these fit relationships are valid for the tested range and combinations of dimensionless
parameters listed in Table 1 but should be used with caution when applied near the edges of the parameter
ranges modeled in this study for nonsheet floods. They were tested against test simulations that
encompassed different parameter combinations (Figure 13 and Table 1) and are yet to be validated outside of
the modeled ranges. Nevertheless, most of the acceleration factor ratios have predictable asymptotical
behaviors (section 5).

Notations

Cf dimensionless friction coefficient
Fr Froude number
Frn normal Froude number
Fr0 Froude number at the rim
g acceleration of gravity (m/s2)
h flow depth (m)
hc critical flow depth (m)
hn normal flow depth (m)
h0 flow depth at the brink (m)
l canyon length (m)
l* downslope backwater parameter
Lb backwater length (m)
n Manning’s n (s/m1/3)
q discharge per unit width (m2/s)
qn upstream discharge per unit width (m2/s)
q0 discharge per unit width at the brink (m2/s)
q* normalized cumulative head discharge
Qh total discharge within the canyon head (m3/s)
Qn normal discharge flowing across a width of a canyon radius (m3/s)
r ratio of flow depth to normal flow depth
S bed slope upstream of the waterfall
t time (s)
U depth-averaged flow velocity (m/s)
Un depth-averaged normal flow velocity (m/s)
Up depth-averaged flow velocity perpendicular to the brink (m/s)
Ux depth-averaged downslope component of flow velocity (m/s)
Uy depth-averaged cross-slope component of flow velocity (m/s)
U0 depth-averaged flow velocity at the brink (m/s)
u* shear velocity (m/s)
w canyon width (m)
w* canyon-to-flood width ratio
W* lateral backwater flood width limitation factor
W flood width (m)
x downslope spatial coordinate (m)
y cross-slope spatial coordinate (m)

α1D acceleration factor at the brink of a 1-D step
α2D acceleration factor at the brink of a 2-D canyon
α* acceleration factor ratio
α �

h
acceleration factor ratio at the head center

α �
w

acceleration factor ratio at the head-to-wall junction
α �

t
acceleration factor ratio at the canyon toe

α �
w;sf

acceleration factor ratio at the head-to-wall junction for a sheet flood
α �
t;sf

acceleration factor ratio at the canyon toe for a sheet flood
ε fractional acceleration caused by nonhydrostatic pressure at the rim
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θ azimuth with respect to the canyon centerline
ρ density of water (kg/m3)
τb bed shear stress (N/m2)
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