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Abstract The hydraulics of steep mountain streams differ from lower gradient rivers due to shallow and
rough flows, energetic subsurface flow, and macro-scale form drag from immobile boulders and channel
and bed forms. Heightened flow resistance and reduced sediment transport rates in steep streams are
commonly attributed to macro-scale form drag; however, little work has explored steep river
hydrodynamics in the absence of complex bed geometries. Here we present theory for the vertical structure
of flow velocity in steep streams with planar, rough beds that couples surface and subsurface flow. We test
it against flume experiments using a bed of fixed cobbles over a wide range of bed slopes (0.4–30%).
Experimental flows have a nearly logarithmic velocity profile far above the bed; flow velocity decreases less
than logarithmically toward the bed and is nonzero at the bed surface. Velocity profiles match theory
derived using a hybrid eddy viscosity model, in which the mixing length is a function of height above the
bed and bed roughness. Subsurface flow velocities are large (>1 m/s) and follow a modified
Darcy-Brinkman-Forchheimer relation that accounts for channel slope and shear from overlying surface
flow. Near-bed turbulent fluctuations decrease for shallow, rough flows and scale with the depth-averaged
flow velocity rather than bed shear velocity. Flow resistance for rough, planar beds closely matches
observations in natural steep streams despite the lack of bed forms or channel forms in the experiments,
suggesting that macro-scale form drag is smaller than commonly assumed in stress-partitioning models for
sediment transport.

1. Introduction

Steep, coarse-bedded channels dominate the drainage network in mountainous terrain, and understanding
their hydraulics is important for flood mitigation, habitat classification and restoration, and sediment trans-
port in engineering and geomorphology [Buffington et al., 2004; Yager et al., 2007; Rickenmann and Recking,
2011]. Despite more than a century of work on the hydraulics of rivers, most of this effort has been devoted
to moderate to low gradient rivers (S< 0.01, where S is the bed slope) and significant uncertainty exists for
steep streams (0.01< S< 0.3) [Scheingross et al., 2013; Heimann et al., 2015; Prancevic and Lamb, 2015b;
Schneider et al., 2015a]. Observations suggest that the hydraulics of steep streams differ in important ways
from better studied lower gradient rivers. For example, friction factors (i.e., flow resistance coefficients),
which relate the bed shear stress to the depth-averaged flow velocity (i.e., Cf 5u2

�=U2 where u� is the bed
shear velocity and U is the depth-averaged flow velocity), are much greater in steep rivers than predicted
by empirical models developed for lower gradient rivers [Bathurst, 1985; Aberle and Smart, 2003; Ferro, 2003;
Wilcox et al., 2006; Ferguson, 2007; Rickenmann and Recking, 2011]. The vertical profile of flow velocity can
deviate from the classic logarithmic profile known for lower gradient rivers [Wiberg and Smith, 1991; Byrd
et al., 2000; Wohl and Thompson, 2000; Nikora et al., 2004], and the intensity of near-bed velocity fluctuations
(ru=u� where ru is the root-mean-square of flow velocity fluctuations in the downstream direction) due to
turbulence is smaller in shallow, rough flows [Wang et al., 1993; Carollo et al., 2005; Lamb et al., 2008]. Fur-
thermore, semiempirical models for initial sediment motion and bed load flux developed for lower gradient
rivers substantially overestimate sediment transport in steep rivers [Lenzi et al., 1999; Rickenmann, 2001;
Mueller et al., 2005; Yager et al., 2012].

One of the leading ideas to explain these observations is that hydraulics and sediment transport are differ-
ent in steep streams, as compared with lower gradient rivers, because of the presence of rarely mobile (or
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immobile) large boulders, particle clusters, and bed forms or channel forms such as pool-riffle or step-pool
sequences [Buffington and Montgomery, 1999; Millar, 1999; Wilcox et al., 2006; Yager et al., 2007; Nitsche
et al., 2011; Ferguson, 2012; Schneider et al., 2015b]. Interlocking of boulders in steps and other bed structur-
ing can stabilize sediment and reduce transport rates [Church et al., 1998; Zimmermann et al., 2010]. These
bed forms also create a series of overspills and pools that affect the development of a logarithmic boundary
layer and may limit the scale and intensity of turbulent eddies [Wohl and Thompson, 2000; Zimmermann,
2010]. Perhaps more importantly, form drag on immobile boulders and boulder steps (herein referred to as
morphologic form drag to distinguish it from grain drag on the mobile bed sediment) is often argued to be
the primary mechanism to slow the flow thereby increasing the friction factor [Buffington and Montgomery,
1999; Aberle and Smart, 2003; Wilcox et al., 2006; Ferguson, 2012]. Morphologic form drag is also thought to
reduce the bed stress available to drive sediment transport, and therefore may explain heightened critical
Shields numbers for initial sediment motion [Mueller et al., 2005; Recking, 2009; Ferguson, 2012] and reduced
sediment transport rates [Rickenmann, 2001; Yager et al., 2007; Schneider et al., 2015b] in steep streams.

In order to empirically assess the influence of larger boulders and bed forms on flow hydraulics and sediment
transport, it is typical to compare observations from rivers or flumes with bed forms to ‘‘base cases’’ without bed
forms, while holding all other parameters constant. This comparison is the basis of classic theory for linear stress
partitioning in rivers where the total frictional stress can be computed as the sum of drag on the bed sediment,
banks, and morphologic form drag due to bed forms and other macro-scale roughness [Einstein and Barbarossa,
1952]. Similar concepts have been adopted for linear partitioning of friction factors [Millar, 1999; Wilcox et al.,
2006; Rickenmann and Recking, 2011]. Similarly, the influence of bed forms and large boulders on the vertical
structure of flow velocity and turbulence is often assessed by comparison with expectations (e.g., logarithmic
profile) developed from planar beds [Wiberg and Smith, 1991; Byrd et al., 2000].

Decades of measurements of flow hydraulics for planar, rough beds have provided this bed form-free base
case in low gradient rivers, building on the work of Nikuradse [1933], which allows for quantitative assess-
ment of the role of bed forms in momentum conservation, flow resistance, the structure of the velocity pro-
file, and sediment transport [Meyer-Peter and M€uller, 1948; Engelund and Hansen, 1967; Parker and Peterson,
1980]. For example, the friction coefficient is often related to flow depth, h, and bed roughness height, ks,
using a Manning-Strickler relation

Cf �
u2
�

U2
5a

h
ks

� �b

(1)

in which a 5 0.015 and b 5 21/3 are often used successfully for low gradient gravel bed rivers with planar beds
[Parker, 1991]. However, similar, well-accepted theories for base-case flow resistance (i.e., for planar, rough beds
that lack larger-scale morphologic form drag) are not available for steep streams. This knowledge gap exists
because few natural high-gradient streams exist without the complicating issues of bed forms and immobile
boulders [Rickenmann, 2012; Yager et al., 2012], and most flume experiments to date have focused on lower gra-
dient rivers, or have complicating effects related to bed forms or channel forms [Crowe, 2002; Zimmermann
et al., 2010] and sediment transport [Bathurst et al., 1987; Recking et al., 2008a, 2008b]. Nonetheless, the few
experimental studies aimed at steep, coarse-grained rivers with planar (or nearly planar) beds report Cf values
typically much larger than predicted by equation (1), especially for cases with large relative roughness (e.g.,
ks=h> 0.2) [Mizuyama, 1977; Bathurst et al., 1981; Cao, 1985; Rice et al., 1998; Recking et al., 2008a].

The lack of a well-accepted baseline for steep streams has led many workers to apply relations developed
for lower gradient rivers, like equation (1), to steep streams. For example, several studies compare field and
flume measurements of hydraulics and sediment transport in natural steep streams that contain the compli-
cating effects of immobile boulders and bed forms to empirical relationships developed for low gradient
rivers with planar beds, and attribute the often significant differences to effects that arise from the presence
of form drag on immobile boulders or step-pool bed forms [Rickenmann, 2001; Nitsche et al., 2011; Ferguson,
2012; Yager et al., 2012]. An additional possibility, however, is that the hydraulics of steep streams differ
from lower gradient rivers even for planar, rough beds that lack bed forms and other sources of macro-
scale form drag.

There are several reasons to expect that empirical relationships developed for low gradient planar-bed riv-
ers may not apply to steep streams, even for cases without bed forms or channel forms, grain interlocking,
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or large immobile boulders. Steep streams tend to have small flow depths relative to the gravel, cobbles, or
boulders that compose the mobile part of the river bed, even at bankfull stages, such that the so-called
‘‘roughness layer’’ [Nikora et al., 2001] makes up a substantial portion of the flow [Bathurst, 1985; Recking,
2009]. Moreover, shallow flows on steep slopes with planar, rough beds can have Froude numbers that
approach or exceed unity, resulting in highly three-dimensional flow that spills over grain tops
[Zimmermann, 2010], standing and breaking waves [Flammer et al., 1970; Lawrence, 2000] and significant
aeration [Straub and Lamb, 1956; Valle and Pasternack, 2006]. On steep slopes, near-bed flow velocities can
be high even for shallow flow, which combined with coarse, permeable bed sediment, results in large bed
roughness Reynolds numbers (i.e., Reks 5u�ks=m> 103, where ks is the characteristic bed roughness height
and m is the kinematic viscosity) and fully turbulent wakes behind particles. In addition, the combination of
steep bed gradients and coarse bed material can produce significant subsurface flow through the bed,
which may be non-Darcian or turbulent [Packman et al., 2004; Manes et al., 2011a].

There is a need to develop and test theory for the hydraulics of steep streams with planar, rough beds in
the absence of bed forms and large boulders, similar to what has been done for lower gradient rivers and
pipe flow, to form a base case that can be compared with more complex bed and channel geometries in
natural rivers. To this end, we review previous work on the hydraulics of coupled surface and subsurface
flows in section 2. This work is used as a basis for a new 1-D flow velocity model in steep rivers with planar,
rough beds presented in section 3. Section 4 describes methods for flume experiments where we measured
vertical profiles of flow velocity and turbulence over a planar cobble bed and across a wide range of chan-
nel gradients and water discharges. Section 5 reports the experimental results and comparison with our
model. Section 6 discusses the implications of our results for stress partitioning and the role of bed forms in
flow resistance and sediment transport in steep streams.

2. Background and Problem Conceptualization

It is useful to conceptualize the hydraulics of mountain rivers as composed of surface flow (z> 0) and sub-
surface flow (z< 0) with the boundary between the two representing the average bed elevation (Figure 1).
Following Nikora et al. [2001], the surface flow can be divided into three main layers: a roughness layer, log-
arithmic layer, and an outer layer. In low gradient rivers, the roughness layer is typically a small part of the
flow depth, and often the outer layer is neglected, so that workers tend to use the well-known log law for
turbulent boundary layers

uðzÞ
u�

5
1
j

ln
z

z0

� �
5

1
j

ln
30z
ks

� �
(2)

where uðzÞ is the downstream velocity averaged in time over turbulence and laterally in space over variability
in local bed roughness, z is the distance above the bed in the direction perpendicular to the bed, j is von

Karman’s constant of 0.41, and z05

ks=30 for hydraulically rough flow
[Schlichting, 1979]. In practice, the
depth-averaged version of equation
(2) is often approximated as a power
law resulting in equation (1).

For flows with high relative rough-
ness (i.e., large ks=h), the roughness
layer cannot be neglected. The
roughness layer is a region where
flow velocities and stresses are
strongly affected by blockage and
form drag induced from the grain
roughness [Nowell and Church, 1979;
Dittrich and Koll, 1997; Lawrence,
1997; Gioia and Chakraborty, 2006]
(Figure 1). Wiberg and Smith [1991]

Figure 1. Schematic of zones of flow for the surface (z> 0) and subsurface (z< 0)
over a rough, permeable bed. The bed slope angle is h, h is the average flow depth, g
is the average bed thickness, D is the sediment intermediate diameter, �u is the
downstream flow velocity averaged over turbulence, and u0 is �u at z 5 0.
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solved for the effect of grain drag on the momentum balance in the roughness layer and showed that flow
should deviate from logarithmic in the roughness layer. Nikora et al. [2001] suggested both a linear and expo-
nential velocity profile for the roughness layer based on different scaling arguments of the double-averaged
equations of motion, and both may be valid depending on the spacing of the roughness elements [Coleman
et al., 2007]. To account for reduced sediment transport in very shallow flows, Lamb et al. [2008] derived a
model within the roughness layer that predicted a linear profile for deep flows, and a quadratic profile with
lower velocities for shallow flows. Recking [2009] proposed vertically uniform flow velocity in the roughness
layer, and a velocity magnitude within the roughness layer that decreases for shallow, rough flows by compar-
ison to bulk friction factors.

The subsurface layer consists of flow through pores between particles (Figure 1). Although the subsurface
flow is often considered negligible in rivers, it is more important in steep rivers where large head gra-
dients can drive fast flow through permeable, coarse-grained beds [Packman et al., 2004]. Following Nepf
and Vivoni [2000] and Manes et al. [2012], we conceptualize the subsurface flow consisting of a lower layer
of groundwater flow and an upper ‘‘exchange layer.’’ Flow in the exchange layer differs from that in the
groundwater layer because here shear and turbulence from the surface flow above drive enhanced sub-
surface flow and mixing [Chan et al., 2007; Rathnayake and Izumi, 2009]. For example, Packman et al.
[2004] showed that diffusion into the bed is a function of the overlying flow, turbulence, momentum
transfer, and pore geometry. Exchange layer depth is expected to scale with a drag length parametrized
by the aerial density of roughness elements and a drag coefficient [Nepf et al., 2007], which likely scales
with grain diameter for a gravel bed [Manes et al., 2012]. Similar to classical theory for flow through
porous media, flow in the groundwater layer is driven by a hydraulic head gradient, which for flow
through a channel bed is on average proportional to the bed slope. Subsurface flow is typically modeled
using Darcy’s law. However, in coarse-grained rivers subsurface flow is likely to violate Darcy’s law and in
cases be fully turbulent and may be better represented by Forchheimer’s equation [Chaudhary et al.,
2011; Manes et al., 2012].

Few studies have attempted to couple turbulent surface flow with a roughness layer and non-Darcian sub-
surface flow. Beavers and Joseph [1967] found an analytical solution for the case of coupled laminar surface
flow and Darcian subsurface flow. Others have extended this analysis to turbulent surface flow, but still with
Darcian subsurface flow [Manes et al., 2011b; Battiato, 2012]. Studies that do include non-Darcian subsurface
flow typically do not include a roughness layer [Vafai and Kim, 1990; Zhou and Mendoza, 1993; Chan et al.,
2007]. Katul et al. [2002] proposed a hyperbolic tangent function to describe flow velocity within and slight-
ly above the roughness layer. The function predicts that the velocity profile is symmetric about the rough-
ness layer, which is unlikely to hold far from the bed [White and Nepf, 2008].

Probably the most detailed work in coupled surface and subsurface flows has been done for flow through
submerged vegetation or for wind over a canopy [Raupach et al., 1991; Nepf and Vivoni, 2000; Nepf, 2012].
For example, Defina and Bixio [2005] found good support for the two layer model of Klopstra et al. [1997]
that couples form drag dominated subsurface flow below the canopy with a logarithmic profile above. Simi-
lar models have been derived for depth-averaged flow above and within cylindrical vegetation stems
[Huthoff et al., 2007; Konings et al., 2012]. While similar in some respects, there are several differences that
make application of models for flow over vegetation to steep, rough river beds uncertain. First, since vege-
tation is typically conceptualized as flexible near-vertical columns, the location of the boundary between
the surface and subsurface flow is unclear for vegetation, and thus the roughness layer and subsurface layer
are typically treated as one layer. In this case, a fit parameter, the so-called zero displacement height, must
be used to define the location of the boundary condition z 5 z0 that is needed for the upper log layer
[Raupach et al., 1991]. In contrast, for a gravel bed, the boundary between surface and subsurface flow is
more easily defined as the average bed elevation, and the porosity decreases in a predictable way from the
particle tops into the bed [e.g., Nikora et al., 2001]. Second, the deformability of vegetation results in flow
dynamics that do not exist for a rigid rough bed [Ghisalberti and Nepf, 2009]. Finally, flow over vegetation is
typically considered for cases with small (or zero) bed gradient, such that all of the potential changes in sur-
face flow hydraulics discussed above for steep rivers may not be present for vegetated flows. In addition,
subsurface flow through vegetation on low (or zero) bed gradients is dominated by shear and mixing from
the overriding surface flow [Nepf and Vivoni, 2000]. In mountain streams, on the other hand, head gradients
due to the steep bed slope can drive significant subsurface flow independent of surface flow.
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3. Model Development

Here we build on previous work and derive a new 1-D model for coupled subsurface and surface flow cen-
tered on application to steep rivers with rough, planar beds. The model is implicitly assumed to represent
flow velocity averaged in time over turbulence and laterally in space over variability in local grain-scale bed
roughness. First, the surface flow model is derived based on a mixing-length argument. Then the surface
flow is coupled to a model for non-Darcian subsurface flow driven by both the bed slope and shear from
the overriding surface flow. Finally the result is depth averaged to derive the friction factor.

3.1. Hybrid Mixing-Length Model
Our approach to the surface flow is similar to others who have used a mixing length to derive the vertical
velocity profile in the roughness layer [Mizuyama, 1977; Schlichting, 1979; Wiberg and Smith, 1987a; Nelson
et al., 1991; Wiberg and Smith, 1991; Lawrence, 1997; Nikora et al., 2001; Lamb et al., 2008]. We follow
Christensen [1972] and propose a mixing-length model that is intended to work seamlessly across the
roughness layer and into the logarithmic layer.

The vertical structure of flow in turbulent open channel flow can be approximated using the Boussinesq
eddy viscosity approach

sðzÞ5qu2
� 12

z
h

� �
5qedu=dz (3)

in which sðzÞ is the shear stress, u� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðz50Þ=q

p
is the bed shear velocity, h is the flow depth and q is fluid

density. Following Prandtl’s hypothesis, the eddy viscosity, e, can be approximated as the product of local
turbulence velocity (ut) and length (L) scales, i.e.,

e5u� 12
z
h

� �
L (4)

in which the turbulent velocity is assumed to decrease linearly with distance above the bed (i.e.,
ut5u�ð12z=hÞ). If eddy size is set to be proportional to distance from the bed,

L5jz (5)

then equations (3)–(5) can be combined and integrated to yield the well-known log law for turbulent
boundary layers (equation (2)).

Within the roughness layer (Figure 1), flow velocity can deviate substantially from equation (2). For flows
with large relative roughness (ks/h), turbulent mixing is dominated by wakes shed from roughness ele-
ments, and therefore the mixing length within the roughness layer might be better described by

L5a1ks (6)

where a1 is a constant of proportionality that is likely less than unity [Schlichting, 1979; Wiberg and Smith,
1987a; Nelson et al., 1991; Wiberg and Smith, 1991]. For grain roughness of interest here, ks � 2.5D84 [e.g.,
Kamphuis, 1974] (Figure 2b). Equation (6) has also been proposed for mixing within vegetation [Rowinski
and Kubrak, 2002] and confirmed by experiments [Ghisalberti and Nepf, 2009]. Lamb et al. [2008] used equa-
tions (3), (4), and (6) to derive a velocity profile model within the roughness layer that varies from linear for
deep flows to parabolic for shallow flows; however, their model does not apply to the flow above the
roughness layer (i.e., z> ks), and introduces an unrealistic discontinuity in the velocity profile gradient at the
top of the roughness layer.

To derive an approximate velocity profile that is valid for both the roughness layer and the logarithmic layer
(Figure 1), and for both shallow (h< ks) and deep (h> ks) flows, here we use a hybrid mixing-length model
in which the length scale of turbulent mixing is controlled by both grain roughness and the distance from
the bed, i.e., the sum of equations (5) and (6) [Christensen, 1972],

L5jz1a1ks (7)

Thus, near the bed equation (7) approaches equation (6) and mixing is dominated by grain roughness. Far
from the bed (z> ks), equation (7) approaches equation (5) similar to Prandtl’s original hypothesis. This
approach is somewhat similar to that of Ferguson [2007] in that he proposed a model for depth-averaged
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velocity (e.g., equation (2)) that works seamlessly
across shallow and deep flows, but it was not
derived in terms of a vertical velocity profile.
Equations (3), (4), and (7) can be combined and
integrated to yield

uðzÞ2u0

u�
5

1
j

ln 11
jz

a1ks

� �
(8)

in which the boundary condition uðz50Þ5u0 has
been applied, where u0 is a seepage velocity at
the bed surface that is likely nonzero in perme-
able gravel beds on steep slopes (Figure 1). Note
that the boundary condition uðz5z0Þ50 as typi-
cally applied in derivation of the log law is not
necessary here because, unlike the standard deri-
vation, there is not a singularity at z 5 0 in equa-
tion (8). Equation (8) should converge to the
typical log law for deep flow, and therefore equa-
tions (2) and (8) can be combined to solve for the
unknown coefficient in the limit of z� ks,

a15
j

30
exp j

u0

u�

� �
(9)

For the case of an impermeable bed, u0 5 0 and
equation (9) reduces to a15 j

30 5 0.014. Combi-
nation of equations (8) and (9) results in a pre-
diction for the velocity profile both within and
above the roughness layer

uðzÞ2u0

u�
5

1
j

ln 11
30z
ks

exp ð2j
u0

u�
Þ

� �
(10)

For the case of an impermeable bed, equation
(10) reduces to

uðzÞ
u�

5
1
j

ln 11
30z
ks

� �
(11)

Equation (11), like the original log law, is a simple function of height above the bed, and it converges
with the log law for deep flow (z� ks) (Figure 2a). The two models differ, however, near the bed where
equation (11) predicts overall greater velocities than equation (2), and finite velocities in the region of
0< z< ks/30 rather than zero velocity as in equation (2). Equation (11) is similar to the zero-plane dis-
placement concept often used in flow over vegetation to specify a virtual origin of the bed [Raupach
et al., 1991]. Here we find that the displacement height must be ks for equation (10) to converge to the
log-profile above the roughness layer. Unlike the model of Lamb et al. [2008], the hybrid mixing-length
model proposed here applies both above and within the roughness layer and predicts a smooth velocity
profile across the entire flow depth (Figure 2a). In addition, Figure 2a also shows that the near-bed flow
velocities predicted by equation (10) increase with increasing subsurface flow velocities, u0, while still
converging with the standard log law higher up in the water column. In the next section, we formulate a
model for subsurface flow velocity, owing to the potential importance of subsurface flow in altering the
surface flow velocity profile through u0.

3.2. Subsurface Flow Model
Subsurface flow at scales larger than the pore scale and for large subsurface Reynolds numbers can be
modeled using the Darcy-Forchheimer-Brinkman equation, which for steady, uniform, unconfined flow in
1-D is given by [Bear, 1972]

Figure 2. (a) Example velocity profiles predicted by the log law
(equation (2)) and the proposed hybrid mixing-length model
(equation (10)) for different values of subsurface flow. (b) Porosity
within the roughness layer for a gravel bed as presented by Nikora
et al. [2001, Figure 3] based on a compilation of data from natural
rivers and flume experiments, which showed little variation, from
Nikora et al. [1998]. To generate the points in Figure 2b, we equated
the standard deviation of bed elevation from Nikora et al. [2001] to
0.875ks based on the analysis of Nikora et al. [1998]. Our best fit curve
is equation (18).
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2S5
1
qg

ds
dz

2
u
K

2F�u2 (12)

in which K5
qgk
l is the hydraulic conductivity, F�5 F/sub

g
ffiffi
k
p , g is the acceleration due to gravity, –S is the head

gradient (which in our case is the negative of bed slope), l is the fluid viscosity, k is the permeability, F is
the Forchheimer coefficient, and /sub is the porosity in the subsurface. On the right-hand side of equation
(12), the first term is the Brinkman term that accounts for fluid shear stress gradients, the second term is the
Darcy term, and the third term is the Forchheimer term that is necessary for large pore-Reynolds numbers
for flow through gravel and cobbles. If the Brinkman and Forchheimer terms are neglected, equation (12)
simplifies to the standard form of Darcy’s Law (–S 5 –u/K).

Equation (12) shows that the gradient in fluid shear stress across the bed surface (z 5 0) must be known to
determine u0. For the case of coupled surface-subsurface flow of concern here, ds=dz is nonzero at z 5 0
due to shear from the overlying surface flow, and is not known a priori. Equation (12) can be rewritten as a
second order nonlinear ordinary differential equation using an eddy viscosity closure for s and solved
numerically. However, here we seek a simpler analytical approximation to equation (12).

Surface flows affect the subsurface flow velocity, shear stress, and turbulence to some level below the bed
surface known as the exchange depth z 5 2P [Nepf and Vivoni, 2000; Ghisalberti, 2009] (Figure 1), below
which sðz � 2PÞ � 0 at the macropore scale. Depth averaging equation (12) from the bed surface (z 5 0) to
the exchange depth (z 5 –P) and rearranging results in

S 11
h
P

� �
5

Usub

K
1C1F�U2

sub (13)

in which Usub5 1
P

Ð 0
2P �udz is the depth-averaged subsurface velocity in the exchange layer of thickness P and

sð0Þ5sb5qghsin h � qghS for steady and uniform surface flow. To perform the integration analytically in

equation (13), we approximate the square of the depth-averaged velocity within the exchange zone as 1
PÐ 0

2P �u2dz5C1U2
sub where the value of C1 depends on the shape of the subsurface velocity profile and is likely

order one. For example, if the velocity profile in the exchange layer is linear [Nikora et al., 2001] and the
deep groundwater flow is negligible, then C1 5 2. If the profile decays exponentially with an e-folding
length of P, then C1 5 1.4. Equation (13) can be solved using the quadratic formula,

Usub5
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

C1KF�

� �2

1
4S

C1F�
h
P

11

� �s
2

1
2

1
C1KF�

(14)

Finally, we argue that the flow velocity at the bed surface through the grains, u0, should scale linearly with
the depth-averaged flow velocity within the exchange layer, so that

u05C2Usub=/sub (15)

where C2 is an order one constant that again depends on the shape of the velocity profile within the
exchange layer. If the profile is linear and the deep groundwater flow is negligible, then C2 5 2. If the profile
is an exponential decay with an e-folding length of P, then C2 5 1.6.

There are no data, to our knowledge, to test equations (14) and (15) for coupled surface and subsurface
flow in rivers; however, simpler solutions to equation (14) exist for special cases which yield familiar results.
For example, for subsurface flow within submerged vegetation or a tree canopy that is driven entirely by
shear from the overlying fluid, S 5 0 in equation (12), and if the Darcy term is neglected, equation (12)
reduces to F�u25 1

qg
ds
dz, which can be integrated across the exchange layer as above, to yield

u2
0

u2
�

5C2
U2

sub

u2
�

5
C2

C1gPF�
(16)

Equation (16) is similar to findings for flow over canopies of vegetation [Huthoff et al., 2007; Nepf, 2012],
where the dimensionless coefficient C2

C1gPF� has been found to be equal to �2.6 [Ghisalberti, 2009].

Water Resources Research 10.1002/2016WR019579

LAMB ET AL. HYDRODYNAMICS OF STEEP STREAMS 7



3.3. Depth-Averaged Flow and Bulk Friction Factor
To derive the depth-averaged surface flow within the roughness and logarithmic layers (Usurf ), the product
of the flow velocity and porosity can be integrated from zero to the flow depth (h) and normalized by h,
that is

Usurf

u�
5

1
h

ðh
0

�uðzÞ
u�

/ðzÞdz (17)

Based on the data of Nikora et al. [1998, 2001] for natural and experimental gravel beds, we find that porosi-
ty in the roughness layer is well represented by

/ðzÞ5120:5exp

�
2

z
rz

�
(18)

in which rz is the standard deviation of
elevations, which we set equal to 0.35 D50

based on the grain-size distributions pre-
sented in Nikora et al. [1998]. Equation (18)
produces the expected behavior of / 5 1
far above the roughness layer, porosity is
reduced within the roughness layer, and
/5/sub 5 0.5 at z 5 0. We insert equations
(10) and (18) into (17) and integrate using
finite differences to find the depth-
averaged surface velocity, Usurf. The total
depth-averaged velocity, U, including sur-
face flow and subsurface flow within the
exchange layer is then

U5
Usurf h1UsubP

h1P
(19)

for the case of negligible deep subsurface
flow (e.g., due to filling of pores with fines,
or a bedrock boundary), which is the case
for our flume experiments. The bulk fric-
tion coefficients can now be estimated
using Cf ;total5u2

�=U2 for the combined sur-
face and subsurface flow, and Cf ;surf 5u2

�=

Usurf
2 for surface flow alone.

4. Experimental Setup and
Methods

Experiments were designed to explore the
hydraulics of flow over a rough and planar
bed across a wide range of conditions rele-
vant for steep mountain streams. The
experiments were carried out in a 15 m
long, 1 m wide tilting flume at the Califor-
nia Institute of Technology (Figure 3a). The
flume has smooth glass walls, such that
wall stresses are negligible, especially for
the coarse-bedded, shallow flows of con-
cern here. Fifty-eight experiments were
conducted using the same cobble bed and

A

Figure 3. (a) View looking upstream in the flume bed with shallow flow at
S 5 0.15 (Experiment 43; supporting information Table S1). (b) Grain-size dis-
tribution for the intermediate diameter of cobbles used in the experiments.
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varying channel-bed slope (0.004< S< 0.3) and flow discharge (0.007<Q< 0.69 m3/s) over a wide range of
conditions, including cases much steeper than typically investigated (Table 1; Table S1 supporting informa-
tion). All flows were fully turbulent (Re 5Usurf h=m> 103) and Froude numbers ranged from subcritical to
supercritical (0.25< Fr< 7.8, in which Fr 5 Usurf=

ffiffiffiffiffiffi
gh

p
).

Natural river cobbles with a median grain diameter of D50 5 49 mm and D84 5 64 mm (Figure 3) were hand
screed to a thickness of about one grain diameter. The sediment size was picked to ensure large roughness
Reynolds numbers (Re ks 5u�ks=m> 103; Table 1), consistent with most mountain streams. The cobbles were
fixed to the flume floor using a thin coating of epoxy, which did not alter particle sizes, shapes or pore
spaces significantly. We fixed the particles to flume floor in order to explore hydraulic conditions that
exceed that required to mobilize sediment while preventing bed load transport and the formation of bed
forms (e.g., alternating bars or step pools), to maintain the planar, base-case scenario needed for stress par-
titioning. For example, many of the Shields numbers (s�5

u2
�

RgD50
, where R 5 1.65 is the submerged specific

density of sediment) in our experiments (0.004< s�< 0.48; Table 1) were near or exceeded the expected
threshold of motion [Lamb et al., 2008; Prancevic et al., 2014].

The flume is equipped with a motorized cart that travels on rails and carries a number of instruments. A
Keyence laser distance meter was used to measure the bed topography at sub-mm vertical accuracy and
1 mm spatial resolution along the centerline of the flume. The top of the bed (z 5 0) was defined as the
average elevation from this profile, which was 28 mm above the impermeable floor of the flume. That is,
the thickness of the subsurface layer was g 5 28 mm (Figure 1). A Massa ultrasonic probe was used to map
the water surface topography for each experiment at 50 mm point spacing, and at sub-mm accuracy in the
vertical dimension. Local flow depth was calculated as the difference between the water surface elevation
and bed elevation, and the average flow depth, h, was calculated as the spatial average along the flume
centerline. The local depth was set to zero prior to averaging for points on particles that were partially
emerged from the flow. Flow depths ranged from 0.017< h< 0.52 m and relative roughness was
0.31< ks=h< 9.3 (Table 1).

Discharge was measured with a Rosemount in-line magnetic flow meter, and depth-averaged flow velocity
(U) was calculated following continuity as U 5 Q= ðh1gÞWð Þ in which W 5 1 m is the channel width. For a
given experiment, we adjusted either the roughness of the inlet ramp into the flume (for Fr> 1) or the tail-
gate height at the end of the flume (for Fr< 1) to achieve uniform flow across the center 10 m of the flume
(i.e., the test section). To verify uniform flow, we calculated a dimensionless flow acceleration factor by aver-
aging along the length of the test section the magnitude of spatial acceleration (U dU

dx 1g dh
dx) relative to gravi-

tational acceleration due to the sloping bed (gsin h), following flow conservation equations for 1-D, steady,
depth-averaged flow [Chow, 1959]. For all experiments reported here (supporting information Table S1), the
dimensionless flow acceleration term was held to less than 20% (and in most cases< 5%). Consequently,
we estimate the bed stress assuming steady and uniform flow as sb5qghsin h. This method ensures that
there are not systematic spatial accelerations across the length of the test section; however, significant tem-
poral and spatial flow accelerations did occur at smaller scales due to turbulence and flow through the
roughness layer.

A side-looking Nortek acoustic Doppler velocimeter (ADV) was used to measure a single vertical flow veloci-
ty profile located near the center of the test section. Profiles were made for 15 of the 58 experiments (sup-
porting information Table S1) that are representative of nearly the full range of conditions investigated,

Table 1. Summary of Experiments

Experiment Set
(Number of
Experiments)

Bed
Slope, S

Discharge,
Q (m3/s)

Subsurface
Discharge,

Qsub
a (m3/s) (31023)

Depth-
Averaged
Velocity,

Usurf (m/s)
Flow Depth,

h (m)

Subsurface
Velocity,
u0 (m/s)

Flow Reynolds
Number,

Re (3104)
Froude

Number, Fr

Relative
Roughness,

ks/h

Roughness
Reynolds
Number,

Re ks (3104)
Shields

Number, s�

1 (16) 0.004 0.02–0.69 0.43–1.8 0.23–1.39 0.09–0.52 0.16–0.38 2.0–69 0.25– 0.63 0.31–1.85 0.92–2.2 0.004–0.024
2 (17) 0.02 0.01–0.69 1.0–5.2 0.24–2.11 0.03–0.33 0.33–0.82 0.67–69 0.45–1.18 0.49–5.76 1.2–4.0 0.007–0.078
3 (8) 0.08 0.03–0.52 4.9–10.7 0.48–2.67 0.05–0.19 0.57–1.83 2.5–50 0.68–1.96 0.84–3.12 3.2–6.2 0.051–0.19
4 (8) 0.15 0.01–0.51 6.1–15.0 0.15–3.24 0.03–0.16 2.04–2.26 0.4–50 0.29–7.8 1.0–6.03 2.6–7.8 0.051–0.30
5 (9) 0.3 0.007–0.5 9–20.5 0.34–3.69 0.02–0.13 1–48 0.59–3.26 1.23–9.3 3.5–9.6 0.06–0.48

aSubsurface discharge was calculated, not measured, using Qsub 5 UsubPW.
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except for the steepest slope (30%) where shallow, fast and aerated flows prevented accurate ADV meas-
urements. Owing to the large range of flow conditions and difficulty in making ADV measurements in high-
ly energetic, shallow and bubbly flows, including into the pore spaces between gravel, we did not attempt
spatial averaging of velocity profiles, and therefore cannot isolate the form-induced stresses [Nikora et al.,
2001; Manes et al., 2007; Cooper et al., 2013]. Nonetheless, the profiles were taken at the exact same location
in the flume (with the same fixed cobble bed) for the different experiments, so that profiles can be com-
pared with each other without bias from spatial variations in hydraulics or bed roughness.

For each ADV profile, velocity was measured at �10 points spaced logarithmically in a transect perpendicu-
lar to the average bed surface. For each point, three components of velocity were collected for two minutes
at a sampling rate of 200 Hz, and we seeded the water with 44 lm silica to improve signal to noise. Many of
the experimental flows were aerated, especially at steep bed slopes, which led to a well-known problem of
spike noise [Goring and Nikora, 2002]. We used the bivariate kernel density algorithm of Islam and Zhu
[2013] to despike the ADV data, which was shown to work well in bubbly turbulent jets even when more
than 40% of the data are contaminated with spikes. Because the number of points identified as spikes was
often a large percentage of the total time series, points were removed from the series rather than interpo-
lated to approximate the affected point. Points were removed in all three directions if they were identified
as a spike in one direction. We also removed points using the instrument-reported signal-to-noise ratios
less than 15 and correlation coefficients less than 50. Similar to the findings of Islam and Zhu [2013], we
found that relatively flat spectral density plots prior to filtering, shifted following despiking to near the
expected 25/3 slope in the inertial subrange for turbulent flow (Figure 4a), giving some confidence to the
filtering scheme. Moreover, depth-averaged velocities measured from the ADV profiles match average flow
velocities calculated from flow discharge (i.e., Q/(W(h 1 g))), which was measured independently from the
in-line flow meter (Figure 4b).

Despiked ADV data in the streamwise (u), cross-stream (v) and bed-normal (w) directions were used to cal-
culate the time-averaged local velocities (�u , �v , �w ), the standard deviation due to the fluctuating component
of velocity (ru, rv , rw ), and the streamwise component of the Reynolds stress 2u0w052ðu2uÞðw2wÞ,
where the overbars denote temporal averages. We also report measurements of the mixing length, follow-
ing equations (3) and (4) as

L5u�=ðdu=dzÞ (20)

Turbulence statistics were not computed for time series data with less than 500 points after filtering.

Figure 4. (a) Example power spectral density plot from an ADV measurement during experiments at z 5 2 mm both before (black) and
after (red) filtering for spike noise due to aeration. The dashed line is a 25/3 slope which is expected for the inertial subrange in a turbu-
lent flow. The time series was converted to wave number space using the local time-averaged flow velocity following Taylor’s frozen turbu-
lence hypothesis. (b) Depth-averaged flow velocities calculated from measurements of total discharge (Q) and flow depth (h) versus those
calculated from depth averaging the velocity profile measured from the acoustic Doppler velocimeter (ADV).
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Owing to the permeable cobble bed, subsurface (z< 0) flow velocities were nonnegligible for some of the
experiments. Subsurface flow occurred in a 28 mm thick zone bounded by the impermeable flume floor
below and surface flow above. For cases with ADV velocity profiles, the flow velocities at z 5 0 (i.e., u0) were
calculated by linearly interpolating the vertical velocity profiles, and the depth-averaged surface velocity,
Usurf , was calculated following equation (17) using finite differences. For the experiments without ADV
velocity profiles, the calibrated subsurface flow model (equation (14)) was used to estimate the depth-
averaged subsurface velocity, Usub, and then the surface velocity was computed as Usurf 5ðQ2QsubÞ=ðhWÞ,
in which Qsub5UsubgW is the subsurface discharge.

Mean flow, subsurface flow, and the bulk friction factor are compared with the theory derived in section 3. The
roughness length was set to ks52:5D84. To apply equation (14) to the exchange layer, we assumed P 5 g 528 mm
and found a good fit to our data using C1F* 5 1.6 s2/m2 and K 5 1.0 m/s. These values can be calculated using a flu-
id kinematic viscosity of m51026 m2/s, gravitational acceleration of g 5 9.81 m/s2, C1 5 2 and C2 5 2 (corresponding
to a linear velocity profile in the exchange layer), porosity in the exchange layer of /sub 5 0.5 (equation (19)), For-
chheimer constant of F 5 5 3 1023, and permeability of k 5 1027 m2, in which F and k are slightly larger than val-
ues used by Manes et al. [2012] for a gravel bed river. The constants are empirical and, for the case of coupled
subsurface and surface flow, may differ from those from subsurface flow alone [Zhou and Mendoza, 1993]. Turbu-
lence statistics are also given and compared with expectations from Nezu and Nakagawa [1993].

5. Results

5.1. General Character of the Flows
The experiments by design crossed a wide range in channel slopes and discharges, and produced flows
with depths from 0.03 to 0.52 m and average flow velocities from Usurf 5 0.15 to 3.69 m/s (Table 1). In

Figure 5. Sideview images of the center of the test section for (a, c) low gradient and (b, d) steep bed slopes, S, and at (c, d) low and (a, b)
high discharges, Q. See supporting information Table S1 for corresponding experiment numbers. The yellow cobble is located along the
centerline of the flume and has diameters in the downstream and vertical directions of 75 and 74 mm, respectively.
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general for the same discharge, flow depths decreased with increasing slope and the flow transitioned from
Froude-subcritical to supercritical (Table 1). Increasing channel slope for the same discharge also produced
a rougher water surface and more aerated flow (e.g., Figures 5a and 5b). The change in the water surface
roughness and aeration was principally a function of channel slope and not flow depth. For example, Figure
5c shows a case where the water surface was smooth despite having a flow depth of the same scale as the
bed roughness. In contrast, Figure 5d shows a case with a steep bed slope and shallow flow, in which the
flow was aerated as it spilled over the tops of the cobbles. Despite average Froude numbers that were often
supercritical, many of the steep and shallow cases visually suggest transcritical flow with shoots and pools
occurring at the grain scale (Figure 5d).

5.2. Surface Flow Velocity Profiles
Surface velocity profiles show the expected shape of increasing velocity with distance above the bed (Fig-
ure 6a). In general, experiments with steeper slopes and deeper flows had faster flow. Plotted in semilog
space, the velocity profiles indicate an increasing deviation from the log law (equation (2)) with distance
toward the bed (Figure 6b). Near-bed velocities also were significantly larger than predicted by the hybrid
mixing-length model without inclusion of subsurface velocities (equation (11)), which is especially true for
experiments with steep bed slopes in which subsurface velocities were large. As shown in Figure 6c, despite
the wide range in channel slopes and relative roughness values, all of the velocity profiles collapse to the
prediction given by equation (10), which accounts for both grain-scale turbulent mixing and subsurface
velocities. Grain-scale mixing accounts for the deviation from a logarithmic profile (i.e., profile curvature
near the bed in log linear space), and subsurface flow accounts for the offset of some profiles to higher
velocities near the bed. Both the observations and our new theoretical model converge to the log law far
above the bed.

Mixing lengths for the experimental data are scattered but in general indicate larger mixing lengths with
distance away from the bed—consistent with Prandtl’s hypothesis (equation (5))—for z/ks> 0.1, and a more
uniform mixing length closer to the bed consistent with equation (6) (Figure 7). The hybrid mixing-length
model (equation (7)) captures this transition across the roughness layer to the logarithmic layer. The hybrid

Figure 6. (a) Velocity profiles for all 15 experiments with ADV profiles (see supporting information Table S1). (b, c) Dimensionless velocity
profiles compared with the log law (equation (2)), assuming u0 5 0, and the hybrid mixing-length model (equations (10) and (11))
assuming (Figure 6a) no subsurface flow and (Figure 6b) accounting for the observed subsurface flow.
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mixing-length model also provides an explana-
tion for some of the scatter in the observations
as a result of differing subsurface flow velocities
(Figure 7), which emerges in the model because
mixing in the roughness layer is a function of
subsurface flow velocity relative to the shear
velocity (equation (9)).

5.3. Subsurface Flow
Subsurface flow velocities at z 5 0 ranged from
u0 5 0.16 to 2.26 m/s, with inferred depth-
averaged subsurface flow velocities in the
exchange layer of Usub 5 0.04–0.57 m/s (Figure
8a). All subsurface flows were turbulent with
Reynolds numbers, Resub 5 UsubD50=m, ranging
from 8 3 102 to 4 3 104 (supporting information
Table S1). Based on previous work for turbulent
shear flow over a vegetated canopy with negligi-
ble bed slope, we might expect u0 to scale line-
arly with u� (i.e., equation (16)) with a coefficient
of order unity [Ghisalberti, 2009]. Figure 8 shows
that most data are bounded by 2< u0/u�< 4;
however, the best fit line in a least squares
sense, u057:7u1:7

� , is nonlinear with larger values
of u0/u� corresponding to steeper channel-bed
slopes. We expect that the nonlinear depen-
dence of u0 on u� in our experiments is because
subsurface flow is driven by both shear from the
overlying surface flow (as in the vegetated cano-
py studies) and by gravity acting on the subsur-
face water itself owing to the steep bed slopes.
The subsurface model that considers both of
these effects (equations (14) and (15)) predicts
higher ratios of u0/u� on steeper slopes, and bet-
ter matches the observations than the linear
model (Figure 8b).

5.4. Turbulence
Figure 9 shows the three components of velocity
fluctuations, as well as the streamwise Reynolds
stress. As expected from previous work in lower
sloping and deeper flows, the velocity fluctua-
tions generally increase toward the bed, peak
near the top of the cobbles, and decrease
deeper into the cobble bed [Nezu and
Nakagawa, 1993; Nikora and Goring, 2000].

The normalized Reynolds stresses (2u0w0=u2
� ;

Figure 10a) are less than their expected value of
unity near the bed [Nezu and Rodi, 1986], which
is likely due to strong spatial variations in the
flow structure and form-induced stresses within
the roughness layer that are not captured by our
single profile [Nikora et al., 2001; Coleman et al.,
2007; Cooper et al., 2013]. The near-bed Reynolds

Figure 7. Turbulent mixing length (L) as a function of height above
the bed as calculated from the velocity data for all the experiments
with ADV profiles using (equation (20)), and predictions using
Prandtl’s mixing-length model (equation (5)) and the hybrid mixing-
length model (equation (7)). All length scales are normalized by the
bed roughness height, ks.

Figure 8. Time-averaged flow velocities at the bed surface,
u05�uðz50Þ, plotted versus (a) the bed shear velocity and (b)
predictions from the modified Darcy-Brinkman-Forchheimer
equation (equations (14) and (15)).

Water Resources Research 10.1002/2016WR019579

LAMB ET AL. HYDRODYNAMICS OF STEEP STREAMS 13



stresses show no clear differences between experiments with different channel slopes (Figure 12a). The
data suggest that peak Reynolds stresses might be highest when h � ks; however, it is unclear if this trend
is robust.

Figure 9. Profiles of (a) normalized Reynolds stresses, and turbulence intensities in the (b) downstream (ru), (c) cross-stream (rv ), and (d)
bed-normal (rw ) directions as a function of normalized height above the bed. Data are for all 15 experiments with ADV profiles (supporting
information Table S1).

Figure 10. Near-bed values (linearly interpolated at z 5 0) of (a) normalized Reynolds stresses, and turbulence intensities in the (b) down-
stream (ru), (c) cross-stream (rv ), and (d) bed-normal (rw ) directions as a function of relative roughness.
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Peak near-bed fluctuations in the streamwise
direction are ru/u� � 1.5 (Figure 10b), which is
smaller than typically found in flows with lower
relative roughness [Nezu and Rodi, 1986], and
consistent with the idea that near-bed stream-
wise velocity fluctuations are smaller in rough
and shallow flows [e.g., Lamb et al., 2008]. Cross-
stream near-bed velocity fluctuations are rv /u�
� 0.5, similar to expectations from deeper flows
[Nezu and Rodi, 1986], and show no strong varia-
tions with channel slope or relative roughness
(Figure 10c). Bed-normal (i.e., near vertical) near-
bed velocity fluctuations are rw /u� � 1, which is
also similar to expectations for deeper flows (Fig-
ure 10d). However, rw /u� decreases with increas-
ing channel slope (Figure 10d), which may be
due to the spilling flow over the cobble bed in
those experiments.

Lamb et al. [2008] proposed that near-bed
streamwise velocity fluctuations in rough moun-
tain streams scale better with the depth-

averaged flow velocity, as compared with u� , owing to depth-scale turbulent structures. Their compilation
of previous work indicated

ru5a1Usurf (21)

with a1 � 0.2. Equation (21) can explain much of the variance in our experimental data for ru across the
entire range in channel slope and relative roughness (r2 5 0.83) (Figure 11). However, we found no improve-
ment in characterizing rv or rw with U as compared with u� .

5.5. Depth-Averaged Flow and Friction Factor
Observed bulk friction coefficients, Cf ;surf and Cf ;total , for deep flows (ks=h<�0.3) are small (�1022) and
increase with increasing relative roughness following previous theory for planar beds (i.e., equation (1)) (Fig-
ure 12). However, the bulk friction coefficients for shallow flows increase substantially as the flow shallows
(ks=h> 1) with Cf values that exceed unity for ks=h> 5. The trend in Cf versus relative roughness appears to
be robust regardless of the channel slope or Froude number. For these shallow flows, our observations devi-
ate substantially from equation (1)—a commonly used baseline grain resistance formula. For example,
equation (1) underpredicts the observed Cf ;surf and Cf ;total for ks=h 5 5 by a factor of �50, whereas the
hybrid mixing model (equation (19)) is in better agreement with the observations. The observed bulk fric-
tion coefficients are also similar to the relation of Ferguson [2007], which is a good representation of the
average flow resistance in natural streams [Rickenmann and Recking, 2011], with our measurements of
Cf ;total within a factor of 0.26 (median) of the Ferguson relation.

The model and most of the observations indicate that Cf ;total is larger than Cf ;surf , indicating slower flow and
greater flow resistance in the subsurface flow layer as compared to the surface flow. However, the differ-
ence is relatively minor. For cases of low relative roughness and low bed slopes, flow resistance in the sub-
surface layer is high, but the subsurface discharge is negligible compared to the total discharge (Table 1),
such that Cf ;total � Cf ;surf (Figure 12). The discharge in the subsurface layer is not negligible for cases with
steep slopes and high relative roughness; however, for these cases the subsurface flow velocities are larger
and flow resistance in the subsurface is similar to the surface layer, and thus again Cf ;total � Cf ;surf . The great-
est difference between Cf ;total and Cf ;surf occurs for cases with both low relative roughness and low bed
slopes because, for these cases, the subsurface velocity is small compared and the subsurface layer thick-
ness is large relative to the surface flow.

The open symbols in Figure 12a show the friction coefficient under the common assumption that the sub-
surface discharge is negligible (i.e., Usurf � Q=hW), as a comparison to the filled symbols where

Figure 11. Near-bed values (linearly interpolated at z 5 0) of turbulence
intensities in the downstream (ru) direction as a function of depth-
averaged surface flow velocity. The solid line is the linear relation given
by ru50:2Usurf (equation (21)) as proposed by Lamb et al. [2008].
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Usurf 5ðQ2QsubÞ=hW . Despite the thickness
of the subsurface layer being only
g 5 28 mm (or �0.5D50), neglecting the
subsurface discharge results in an errone-
ous reduction Cf ;surf by as much as an order
of magnitude for cases with steep slopes
and high relative roughness (Figure 12a).

6. Discussion

6.1. Vertical Velocity Profile
The hybrid mixing-length approach allows
a simple derivation of the vertical velocity
profile across the roughness layer and the
rest of the surface flow. It matches our
observations better than the approach pro-
posed by Lamb et al. [2008] of matching
solutions between the two layers with
independent mixing lengths for each layer.
A similar velocity profile using a hybrid mix-
ing length [Christensen, 1972] also was
found to characterize well the velocity pro-
file from the steep flume experiments of
Mizuyama [1977]. Importantly, the hybrid
approach does not produce a discontinuity
in velocity or stress at the top of the rough-
ness layer and allows the velocity profiles
to deviate from logarithmic within the
roughness layer. Our mixing-length esti-
mates also support the hybrid mixing-
length hypothesis because they vary
smoothly over the roughness layer from
constant near z 5 0 to near linear at z� ks

(Figure 7). We expect the model to be
applicable to other rivers as long as beds
are planar and bed roughness Reynolds
numbers are in the fully turbulent regime.

Experiments on flow over vegetation indi-
cate that there is commonly an inflection
point in the vertical velocity profiles in the
subsurface [Katul et al., 2002; Nepf, 2012],
which we do not observe in our experi-
ments, nor was it observed in other steep

stream experiments with planar beds [Mizuyama, 1977]. One reason for this difference may be that our sub-
surface layer is thin, and that a thicker bed may be needed to produce an inflection point deeper in the sub-
surface. In addition, experiments designed to simulate vegetation stems often use vertical cylinders that
creates a step-like discontinuity in porosity and permeability, whereas the transition from surface to subsur-
face flow across the roughness layer for a gravel bed is more gradual (e.g., equation (18)) [Nikora et al.,
2001]. Subsurface flow velocities for the steep sloping cases in our experiments also were much larger than
in most experiments with flow over vegetation, and this high velocity subsurface flow may prevent the
development of an inflection point on steep slopes.

There is a drastic change in the appearance of the flows from placid with a smooth water surface at low
slopes and subcritical Froude numbers, to spilling and aerated flow at very steep slopes and supercritical

Figure 12. Bulk friction coefficient for (a) the surface flow alone (Cf ;surf ) and
(b) for the surface and subsurface flow combined (Cf ;total ) as a function of
relative roughness for all 58 experiments (supporting information Table S1).
The data are compared to equation (1) that is designed for planar, gravel
bed rivers (i.e., no macro-scale form drag) and often taken to be a ‘‘base
case’’ for flow resistance partitioning attributed to grain drag; Ferguson
[2007] (using their recommended values of a1 5 6.5 and a2 5 2.5) that
matches well observations in steep mountain streams that contain macro-
scale form drag; and our hybrid mixing-length model (solid lines) for
different specified values of subsurface flow. In Figure 12a, the filled
symbols represent the values of Cf ;surf accounting for the subsurface flow in
the calculation of the surface flow, that is Usurf 5ðQ2QsubÞ=hW . The open
symbols are the values of Cf ;surf under the common assumption of
negligible subsurface flow, that is Usurf 5Q=hW .
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Froude numbers (Figure 5). It is surprising, however, that the mean flow velocity profiles collapse to the
same relationship regardless of channel slope and Froude number, as long as shear velocity and subsurface
flow are taken into account (Figure 6c). In fact, equation (11) indicates that there is no effect of channel
slope, Froude number or relative roughness on mean flow velocity profiles (i.e., on uðzÞ=u�) for the case of
negligible subsurface flow. While we do find that flow velocities within the roughness layer deviate substan-
tially from logarithmic, the flow profiles in the roughness layer are self-similar whether the flow is deep or
shallow. This is not what we expected given the visual change in the character of the flow (Figure 5) and
previous ideas that shallow flow over roughness significantly affects the flow profile [Lawrence, 1997; Aberle
and Smart, 2003; Wilcox et al., 2006; Ferguson, 2007]. For example, our findings are counter to the models of
Lamb et al. [2008] and Recking [2009], which both proposed reduced mean flow velocities within the rough-
ness layer for shallow flows with high relative roughness. Our results instead show that local time-averaged
flow velocities within the roughness layer (equation (11)) are insensitive to relative roughness (ks=h), except
through its influence on subsurface velocity.

6.2. Importance of Subsurface Flow
Our experiments produced a wide range of subsurface flow velocities, which were small for low bed slopes
and large for steep bed slopes. The finding of u0 / u1:7

� is unlikely to be universal and instead reflects the
flow depth and slope combinations that were possible in the flume experiments. Equation (14), on the other
hand, should hold for any combination of slope and u� and allows the model to be adapted to different
grain sizes and grain-size distributions through input values of porosity and permeability. For the steep
sloping experiments, the subsurface flow affects not only the flow velocities at the bed surface but also the
apparent mixing length, structure of the mean velocity throughout the flow depth, and the bulk friction fac-
tor. Unlike most studies of flow through vegetation where subsurface flow velocities are driven by shear
from the overriding surface flow [Nepf, 2012], our experiments indicate that on steeper slopes, subsurface
flow is also driven by gravity acting directly on the subsurface fluid (i.e., there is a hydraulic head gradient),
which results in higher subsurface flow velocities than predicted from surface flow shear alone. While
enhanced mixing between the surface and subsurface flows may cause higher friction factors for low slop-
ing channels with negligible subsurface flow velocity [Manes et al., 2011b; Cheng et al., 2016], our model
and measurements of the velocity profile show that faster subsurface flow velocities on steep slopes result
in faster surface flows, and hence overall lower friction factors (Figure 12).

It is surprising that subsurface flow had such an impact on the surface flow in our experiments because the
alluvial bed was only about one grain-diameter thick, with the subsurface layer only 28 mm thick, or about
one-half of D50. In addition, for the experiments with ADV profiles, the measured subsurface discharge was
typically only a few percent of the total discharge, and less than 6% of the total discharge for all cases—a
fraction similar to what was found by Recking et al. [2008b] in flume experiments with S< 10%. In our steep-
est (S 5 0.3) and shallowest cases without ADV profiles, subsurface discharge was as much as half of the
total discharge (Table 1). Thus, in addition to explaining changes in the surface velocity profile for steep bed
slopes, subsurface discharge might also explain why some previous workers report lower frictional resis-
tance for planar, coarse-grained beds than reported here. For example, as illustrated in Figure 12a, if subsur-
face discharge is assumed negligible, which is often the case in flume experiments where only the total
discharge is measured [Mizuyama, 1977; Bathurst et al., 1981], then the surface velocity will be overesti-
mated, resulting in a lower estimate of flow resistance. In our experiments, this error would bias the friction-
al resistance low by as much as a factor of ten for the steep, shallow cases (Figure 12a).

Our flume experiments motivate the need for more work on subsurface flow through alluvial beds in steep
mountain streams. The experiments used a relatively narrow grain-size distribution (D84/D50 5 1.3) and a
wider distribution, more typical of gravel bed rivers (e.g., D84/D50 5 3) might reduce subsurface velocities.
For example, filling of pore spaces with fines could reduce subsurface velocities, and this could be
accounted for in equation (14) by modifying the porosity and permeability. However, natural channels at
S> 0.1 tend to have boulder beds that are much coarser than in our experiments, which could increase per-
meability and make subsurface flow more important than in our experiments. In addition, the thickness of
the subsurface layer in our experiments was only �0.5D50; thicker beds of permeable alluvium are expected
for natural streams, which may make subsurface flow more important in those cases. Beyond flow hydrau-
lics, high rates of subsurface flow may influence nutrient cycling [Packman et al., 2004], capture and

Water Resources Research 10.1002/2016WR019579

LAMB ET AL. HYDRODYNAMICS OF STEEP STREAMS 17



transport of fines and organic carbon [Wang et al., 2015], and lead to destabilization of the bed at steep
slopes producing debris flows [Kean et al., 2013; Prancevic et al., 2014].

6.3. Flow Resistance and Stress Partitioning
One of the main motivations to conduct these experiments was to determine the bulk friction coefficient
for the purpose of stress partitioning [Einstein and Barbarossa, 1952]. In terms of friction factors, linear stress
partitioning indicates that the total frictional resistance, CfT, is given by the sum of the friction factor due to
grain drag, Cfg, and morphologic form drag, Cfm,

CfT 5Cfg1Cfm (22)

Stress partitioning is typically thought to be necessary to make accurate predictions of sediment transport
because only grain drag acts to move sediment, and morphologic form drag might dominate the momen-
tum budget [Millar, 1999; Rickenmann, 2001; Aberle and Smart, 2003; Wilcox et al., 2006; Yager et al., 2007;
Nitsche et al., 2011]. A common approach to determine the morphologic form drag is to subtract the grain
drag from the measured or estimated total stress [Einstein and Barbarossa, 1952]. Grain drag in turn is com-
monly calculated from well-known empirical relations like equation (1) developed in large part from flume
experiments over low sloping planar beds.

Our flume experiments lacked bed forms and channel forms (i.e., Cfm 5 0) such that the total friction factor
we measured (Figure 12) is equivalent to that due to grain drag alone, Cfg. Our results show that Cfg for pla-
nar beds with high relative roughness and large particle Reynolds numbers deviate significantly from rela-
tions developed for lower gradient rivers, similar to some previous findings for steep, planar-bedded
streams [Mizuyama, 1977; Bathurst et al., 1981; Cao, 1985; Bathurst, 2002; Recking et al., 2008a; Prancevic and
Lamb, 2015b]. The hybrid mixing-length model and measurements of the velocity profile indicate that the
high flow resistance in shallow, rough flows can be explained as a result of (1) a grain-scale mixing length in
the roughness layer and (2) a roughness layer that comprises an increasing fraction of the total flow depth
for shallow, rough flows. Thus, baseline Cfg values are much larger in mountain streams as compared with
deeper rivers, even in the absence of morphologic form drag from bed forms and channel forms and immo-
bile boulders. In fact, our flume data align with typical measured values of CfT from natural mountain
streams (that have bed forms and channel forms and immobile boulders), which are represented in Figure
12 by the empirical model of Ferguson [2007] that has been shown to be a good predictor of average flow
resistance in natural rivers [Rickenmann and Recking, 2011]. The implication is that morphologic form drag
may play a smaller role in mountain streams than commonly assumed. For example, following the approach
recommended by Rickenmann and Recking [2011] and Ferguson [2012] to calculate CfT from Ferguson [2012]
and Cfg from equation (1), one might conclude that morphologic form drag accounts for an increasingly
large fraction of the momentum budget for shallow, rough flows, reaching 95% or more for ks/h> 3. In con-
trast, measured grain drag from our experiments compare well with the field-calibrated model of Ferguson
[2007], suggesting that morphologic form drag does not change significantly with relative roughness and is
only 20–30% of the total flow resistance.

The flume experiments are simple representations of steep mountain streams, but this is unlikely to be the
cause of heightened flow resistance in the experiments. For example, bed load transport, which was pur-
posefully excluded in our experiments, tends to increase flow resistance for planar beds [Wiberg and Rubin,
1989; Recking et al., 2008a]. If the subsurface layer was filled with fines, subsurface flow would be reduced,
which would lead to slower surface flow (equation (10)) and hence even greater flow resistance. A wider
grain-size distribution on the bed would also result in enhanced flow resistance because the coarse fraction
tends to dominate flow resistance. Wall roughness and channel curvature would also cause larger flow resis-
tance. Thus, we expect these complicated scenarios common to natural channels to have higher flow resis-
tance than our experiments, even for planar beds, which would reduce further the inferred role of
morphologic form drag.

Our results are consistent with Zimmermann [2010] who found that experiments with planar, rough beds
had nearly identical flow resistance as similar experiments with step-pool bed forms. They had expected
the experiments with step pools to have higher flow resistance due to morphologic form drag; but this was
not observed. Others also have noted an increase in the flow resistance from grain drag for shallow, rough
flows [Bathurst, 1985; Lawrence, 2000; Bathurst, 2002; Carling et al., 2002] and often this is attributed to
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increased energy losses from highly 3-D flow, flow spilling over grains, transcritical flow, and standing waves
in shallow flow. It is important to note, however, that we find that the vertical structure of flow velocity with-
in the roughness layer to be similar for deep flows as for shallow flows (Figure 6c). Thus, energy losses asso-
ciated with free surface effects for shallow flow, such as spilling flow, transcritical flow, and standing waves,
also need not be invoked to explain the observed friction factors. All that is needed to explain the flow resis-
tance data in our experiments is that the roughness layer becomes an increasing fraction of the total flow
depth for shallow flows.

6.4. Implications for Sediment Transport
If grain drag dominates flow resistance in steep channels, why then do sediment transport relations cali-
brated for deep flows fail in steep channels with high relative roughness? Schneider et al. [2015b] showed
that bed load transport observations in mountain streams can be empirically fit equally well using either a
stress-partitioning scheme based on a baseline relation like equation (1), or through use of a heightened
critical Shields number for incipient sediment motion, s�c . Given uncertainty in the stress-partitioning con-
cept applied to steep mountain streams, here we focus on reasons for a heightened critical Shields number.
Prancevic et al. [2014] and Prancevic and Lamb [2015b] found that the heightened Shields numbers
observed in natural steep streams can be reproduced in experiments with planar beds of near uniform grav-
el that lacked morphologic form drag from bed forms and channel forms and large immobile grains. Thus,
like heightened flow resistance, heightened s�c in steep streams with high relative roughness appears to
require an explanation that is independent of macro-scale morphologic form drag [Lamb et al., 2008].

Forces on bed sediment at initial motion can be conceptualized as the product of the square of near-bed
velocity and a drag or lift coefficient [Wiberg and Smith, 1987b]. Using stress-partitioning ideas, several mod-
els have attempted to explain heightened critical Shields numbers by assuming that near-bed velocities
decrease with large relative roughness [Lamb et al., 2008; Recking, 2009; Ferguson, 2012]. However, our
results show that local time-averaged velocity within the roughness layer is insensitive to relative rough-
ness, and therefore changes in the structure of the mean flow are unlikely to be the reason behind higher
critical Shields stresses at initial motion in shallow, rough flows. By process of elimination, this points to
increased bed stability due to grain structuring, changes in drag and lift coefficients, or changes in the struc-
ture of turbulence which impacts peak hydrodynamic forces acting on particles.

Bed structuring may play a role in reducing transport rates, especially where boulders form steps and parti-
cle clusters [Church et al., 1998; Zimmermann et al., 2010], but evidence is lacking to support bed structuring
being the dominant reason for heightened critical Shields numbers in steep rivers. Using a force meter,
Prancevic and Lamb [2015a] found the friction angle in natural streams for boulders organized in steps to be
greater than those not in steps, but no systematic differences in grain friction angles as a function of chan-
nel slope. In addition, the experiments of Prancevic et al. [2014] and Prancevic and Lamb [2015b], which
found higher critical Shields numbers with steeper slopes (and higher relative roughness), lacked systematic
changes in bed structuring with slope. These findings then point to drag and lift coefficients and turbulence
as the mechanisms behind lower than expected sediment transport rates in steep channels.

To our knowledge, drag and lift coefficients have not been measured systematically in steep streams across
a wide range of channel-bed slopes with coarse beds and shallow flow depths, and consequently they are
often assumed to be independent of relative roughness and channel slope [Lamb et al., 2008; Recking,
2009]. For an isolated hemisphere on a smooth bed, Flammer et al. [1970] showed that drag forces increase
with greater relative roughness due to a number of effects, including surface waves, especially for subcriti-
cal flows. Similar trends of increasing CD due to wave drag were inferred from studies of block entrainment
[Lawrence, 2000; Carling et al., 2002] and from forces on bridge piers [Hay, 1947; Chaplin and Teigen, 2003].
Thus, if anything, it appears that CD increases with relative roughness, which should make sediment trans-
port more efficient in steep channels, opposite of what is observed. It seems likely that lift decreases as the
flow shallows and slows over the tops of grains [Carling et al., 2002; Lamb et al., 2008], which would make
sediment more stable on steeper slopes. However, direct measurements of lift under conditions of high rel-
ative roughness have not been made.

In support of the hypothesis of Lamb et al. [2008], we find evidence that part of the cause of heightened
critical Shields numbers in steep streams is from reduced intensity of turbulence for streams with high rela-
tive roughness [Wang et al., 1993; Dittrich and Koll, 1997; Carollo et al., 2005]. Lamb et al. [2008] explained
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the dependence of near-bed turbulence on relative roughness as a result of depth-scale eddies with veloci-
ties that correlate with the depth-averaged flow rather than the local flow [see also Nowell and Church,
1979; Recking et al., 2008a]. Our turbulence measurements (Figure 11) support the data compilation of
Lamb et al. [2008] that downstream-directed velocity fluctuations scale better with the depth-averaged flow
velocity than the bed shear velocity, resulting in reduced magnitude of velocity fluctuations for flows with
high relative roughness. Lamb et al. [2008] showed theoretically that the reduction in the magnitude of tur-
bulent fluctuations can account for a significant fraction of the observed increase in the critical Shields num-
ber at incipient motion with increasing channel slope. Because the near-bed turbulent fluctuations (ru)
scale linearly with the depth-averaged flow velocity (Figure 11), the square of turbulence intensity (ru/u�)
must then be inversely proportional to the bulk friction coefficient (Cf). That is,

ru

u�

� �2

/ U
u�

� �2

� 1
Cf

(23)

Equation (23) may help explain why stress-partitioning approaches have had success in explaining initial
sediment motion and sediment flux data on steep slopes [Rickenmann, 2001; Nitsche et al., 2011; Ferguson,
2012; Yager et al., 2012], even if flow resistance is largely dominated by grain drag. Sediment transport is
affected by near-bed turbulence, and our results show that it is near-bed turbulence, rather than the mean
flow in the roughness layer, that depends on flow resistance through the scaling between near-bed turbu-
lence and the depth-averaged flow velocity. For example, the critical Shields number has been argued to
scale as [Lamb et al., 2008]

s�c /
u�

hui1ru

� �2

(24)

in which hui is the time-averaged velocity integrated spatially across a grain. Combination of equations
(21), (23), and (24) with a1 50.2 (Figure 11) and hui5a2u�, where a2 is an order one constant that depends
on the subsurface velocity (Figure 6b), yields a near-power law relation between the critical Shields number
and Cf

s�c / Cc
f (25)

in which c is about one third. For example, c ranges from 0.32 to 0.14 for 1< a2 < 3. Thus, the near-bed tur-
bulence hypothesis of Lamb et al. [2008] for heightened s�c implies a power law relation between s�c and Cf

with a power of about c 5 1/3 for cases with negligible subsurface velocity. These ideas are well supported
by the experiments of Prancevic and Lamb [2015b] who found a strong power law relation between s�c and
Cf with the best fit c of 0.34.

In summary, our analysis suggests that while flow resistance and sediment transport depend on relative
roughness, they might not be causally linked as implied in stress-partitioning models. Instead, flow resis-
tance increases with relative roughness because the roughness layer occupies a larger portion of the total
flow depth for shallow flows. The local time-averaged flow velocities within the roughness layer, however,
are insensitive to changes in relative roughness. In contrast, the intensity of near-bed turbulence is reduced
in shallow, rough flows (following linear scaling with the depth-averaged flow velocity) which results in an
increase in critical Shields number and a decrease in sediment flux with large relative roughness, and a
power law relation between s�c and Cf. At conditions of initial motion, high relative roughness necessarily
correlates with steeper bed slopes [Prancevic and Lamb, 2015b], thus producing a correlation between high
s�c , large Cf, reduced sediment flux, and steep bed slopes in mountain streams.

7. Conclusions

We present a new 1-D theory for the vertical structure of mean flow velocity and the associated bulk friction
factor and compare the theory to a series of flume experiments made with a planar bed of fixed natural
cobbles over a wide range of bed slopes (0.004–0.3) and relative roughness values (0.31–9.3) common to
mountain streams. We find that flow velocity in steep, rough flows has a nearly logarithmic vertical velocity
profile far above the bed; however, flow velocity decreases less than logarithmically as the bed is
approached, and is nonzero at the average-bed elevation (z 5 0). These velocity profiles match a new theory
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for flow above and within a high-Reynolds-number roughness layer derived using a hybrid eddy viscosity
model. The measured velocity profiles are self-similar and are a function of bed shear stress, bed roughness
and the subsurface flow velocity with no independent dependencies on flow depth, relative roughness,
channel slope or Froude number. Thus, the local time-averaged flow velocity in steep, rough streams with
planar beds is remarkably similar to that in lower gradient gravel bed rivers despite obvious visual differ-
ences in the water surface including rough, spilling and aerated flow in the steep cases.

Our experiments produced significant subsurface flow through the cobble bed at steep slopes, which creat-
ed a nonzero ‘‘slip velocity’’ at the bed surface. The slip velocity at the bed surface affected the magnitude
and shape of the velocity profile within the roughness layer and higher into the surface flow. We found
agreement between subsurface flow velocities and a modified Darcy-Forchheimer-Brinkman equation that
accounts for both the bed slope and shear from the overriding surface flow to drive subsurface flow.

Regardless of channel slope and Froude number, we find that flow resistance increases significantly with
increasing relative roughness, and closely matches observations from natural mountain streams. The close
comparison between natural mountain streams and our experiments is surprising because the experiments
lacked bed forms, immobile boulders or other sources of macro-scale form drag that are thought to domi-
nate flow resistance in natural channels. The flow resistance observations can be explained as a result of
high grain drag in the roughness layer, and the fact that the roughness layer occupies an increasing portion
of the total flow depth in shallow flows. These results call into question the applicability of stress-
partitioning techniques in mountain streams, and suggest that macro-scale form drag in mountain streams
may be significantly less than typically assumed.

Near-bed velocity fluctuations were in general lower than expected for cases with deep flows and smooth
beds, and the strongest correlation was between streamwise turbulence intensity and the depth-averaged
flow velocity, rather than bed shear velocity. Thus, while local time-averaged flow velocity appears to be
independent of flow depth and relative roughness, near-bed turbulence intensities are a function of relative
roughness through scaling with the depth-averaged flow velocity. These results support the idea that
reduced sediment transport rates in steep streams may be due to reduced turbulence intensities that occur
in flows with high relative roughness, rather than changes to the local-mean flow. Thus, while steep steams
tend to have both high flow resistance and reduced sediment transport rates, the two may not be causally
linked through macro-scale form drag as implied in stress-partitioning techniques, but instead covary with
relative roughness for different reasons.
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