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What controls channel form in steep mountain streams?
M. C. Palucis’ () and M. P. Lamb'

'Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA

Abstract Steep mountain streams have channel morphologies that transition from alternate bar to
step-pool to cascade with increasing bed slope, which affect stream habitat, flow resistance, and
sediment transport. Experimental and theoretical studies suggest that alternate bars form under large
channel width-to-depth ratios, step-pools form in near supercritical flow or when channel width is
narrow compared to bed grain size, and cascade morphology is related to debris flows. However, the
connection between these process variables and bed slope—the apparent dominant variable for natural
stream types—is unclear. Combining field data and theory, we find that certain bed slopes have unique
channel morphologies because the process variables covary systematically with bed slope. Multiple
stable states are predicted for other ranges in bed slope, suggesting that a competition of underlying
processes leads to the emergence of the most stable channel form.

1. Introduction

Natural streams rarely have flat beds because mobile bed sediment often forms distinct bed and channel
forms, such as ripples, dunes, bars, and alternating steps and pools [e.g., Rubin and McCulloch, 1980;
Engelund and Fredsoe, 1982; Southard, 1991]. The presence of these bed morphologies through the channel
network is important as they affect hydraulic roughness and flow resistance, which in turn affects flow depth
and velocity, sediment transport rates [Hassan and Reid, 1990; Aberle and Smart, 2003; Nitsche et al., 2011;
Lamb et al., 20171, and bedrock incision rates [e.g., Johnson and Whipple, 2010]. Channel state depends on
local flow structure, supply of sediment, and forcing/boundary conditions, resulting in feedbacks between
hydraulics, sediment transport, and bed topography. Because of the relationship between sediment trans-
port rates and flow resistance, considerable effort has gone into understanding the conditions under which
different channel morphologies develop for low gradient sand-bedded streams [e.g., Vanoni and Hwang,
1967; Southard and Boguchwal, 1990; Southard, 1991; Church and McLean, 1994; Venditti, 2007; Hendershot
etal., 2016]. Less work, however, has been done for steeper, gravel- and boulder-bedded streams; these chan-
nels provide important aquatic habitat [e.g., Church, 2002], are conduits for a majority of the sediment deliv-
ered to lower gradient channels [e.g., Milliman and Syvitski, 1992; Yager et al., 2012; Cui and Parker, 2005], and
comprise much of the channel network in mountainous terrains [Shreve, 1969; Stock and Dietrich, 2003]. The
difficulty in observing active sediment transport events in steep streams, combined with the paucity of data
on steep river hydrodynamics has contributed to our lack of understanding of the mechanics behind channel
state and stability within steep alluvial channels.

Numerous classifications of channel morphology have been proposed based on field observations [Rosgen,
1994, 1996; Montgomery and Buffington, 1997; Wohl and Merritt, 2008; Buffington and Montgomery, 2013],
and most of these analyses attribute certain channel forms to distinct ranges in bed slope. For example,
Montgomery and Buffington [1997] showed that channel state changes from alternate bars to plane bed to
steps and pools to cascade morphology (Figure 1) with increasing channel bed slope. Regression analyses
have also shown that bed slope, not channel geometry or grain size, is the best predictor of channel type
for natural rivers [e.g., Wohl and Merritt, 2005; Flores et al., 2006; Altunkaynak and Strom, 2009]. There is a dis-
connect, however, between this basic observation that channel morphology depends only on bed slope, and
more mechanistic theoretical and experimental investigations into the formation of specific channel states.
For example, stability analyses suggest that channel width-to-depth ratios control alternate bar formation
[e.g., Colombini et al., 1987; Parker, 2004], step-pools are hypothesized to result from near Froude critical flow
conditions [Grant et al., 1990] or channel-width spanning boulders [Church and Zimmermann, 2007], and
cascade channels are potentially associated with debris flows [Montgomery et al., 2003]. If channel state
fundamentally depends on variables such as channel width-to-depth ratio, Froude number, and channel
width-to-grain size ratio, why then do natural stream morphologies depend most strongly on bed slope?
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Figure 1. Alluvial channel-reach morphologies (a) Cascade, Squire Creek, Washington, USA; (b) Step-pool, Fox Creek,
California, USA; (c) Plane bed, Rock Creek, California, USA; and (d) Alternate bar, Upper Haukadalsvatn, Iceland. Photo
credit: MPL.

Herein, we explore the hypothesis that the controlling process variables for different channel states covary
with bed slope in a manner that leads to the systematic correlation between channel morphology and
bed slope found in natural streams. We first review current hypotheses for the dominant variables thought
to control channel morphology (section 2). Next, we explicitly show how these dominant variables depend
on bed slope (section 3), compare the theoretical results to field data (sections 4 and 5), and discuss the impli-
cations for predicting unique channel states (section 6).

2, Controlling Variables on Channel Morphology

Alternating bar morphology (Figure 1a) within a stream reach is typically identified by alternating sequences
of pools, defined as topographic depressions within the channel, and bar forms, sediment deposits that form
topographic highs [O'Neill and Abrahams, 1984]. Bar formation in natural channels typically occurs for bed
slopes less than S = 0.03 [Montgomery and Buffington, 1997], where S is the tangent of the bed-slope angle.
Flume and field studies have shown that bar and pool topography is generated by lateral flow convergence,
where pools are scoured, and regions of flow divergence, where sediment is deposited to form bars [e.g.,
Dietrich and Smith, 1983; Dietrich and Whiting, 1989; Nelson et al., 2010]. Theoretical and experimental work
suggests that the ratio of the bankfull channel width, B, to bankfull depth, H, strongly influences bar forma-
tion, where alternating bars occur at moderately large values (B/H > 12) [Colombini et al., 1987, and refer-
ences within; Parker, 2004]. Importantly, despite field observations, alternate bars can be produced in the
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laboratory with bed slopes that far exceed S = 0.03 [Bathurst et al., 1984; Lisle et al., 1991; Weichert et al., 2008],
suggesting that bed slope is not the controlling parameter in their formation.

Stream reaches described as having plane-bed morphology (Figure 1b) lack discrete and/or rhythmic bar
forms and have long stretches of relatively featureless beds [Montgomery and Buffington, 1997]. The term
has been used both for sand-bedded and gravel-bedded channels, though we focus on the latter. Plane
bed is often associated with low channel width-to-depth ratios (B/H < 12) [e.g., Colombini et al., 1987] or
larger bed grain diameter (D) to bankfull depth ratios (0.1 < D/H < 0.8) [Montgomery and Buffington, 19971
as compared to alternate bar reaches.

Step-pool morphologies (Figure 1c) are associated with steeper gradient channels (i.e., ~0.02 < S < ~0.2
[Abrahams et al.,, 1995; Chin, 1999; Zimmermann and Church, 2001]) and are characterized by a distinctly
stepped longitudinal profile. Water flows over and through channel-spanning “steps” composed of large cob-
bles or boulders before plunging into pools below [e.g., Chin, 1989; Grant et al., 1990; Montgomery and
Buffington, 1997], and flow may alternate from Froude critical to supercritical over the steps to subcritical
within the pools [Chin, 1989]. The mechanisms controlling step formation and stability are most commonly
attributed to macroscale antidunes [Whittaker and Jaeggi, 1982; Grant and Mizuyama, 1991], cyclic steps
[Parker and Izumi, 2000; Taki and Parker, 2005], or a granular jamming mechanism [Judd, 1963; Brayshaw
et al., 1983; Zimmermann and Church, 2001; Zimmermann et al., 2010]. Kennedy [1963] used potential flow the-
ory to derive the theoretical domain over which antidunes can form, which is tied to Froude numbers,
0.7 < Fr < 0.96 (see supporting information). Cyclic step development is tied to a similar range in Froude
numbers at the threshold of motion [Parker and Izumi, 2000]. Church and Zimmermann [2007] hypothesized
that the propensity for jamming is controlled by B/D, termed the jamming ratio. They found that steps
formed in both natural and flume channels for jamming ratios B/Dgs < 15 [Church and Zimmermann,
2007], where Dg, is the grain diameter for which 84% of the grains is smaller, and became progressively more
stable for B/Dg, < 6 [Zimmermann et al., 2010].

Montgomery and Buffington [1997] delineate cascade channels as streams in which energy dissipation is
the result of continuous tumbling jet-and-wake flow over large, individual clasts (Figure 1d). These chan-
nels typically occur on bed slopes above 0.1, are often confined by valley walls, and are dominated by
cobbles and boulders [e.g., Montgomery and Buffington, 1997; Livers and Wohl, 2015]. Cascade streams
are tied to portions of the stream network where debris flows may dominate over fluvial processes
(0.1 < S < 0.7 [Stock and Dietrich, 2003; DiBiase et al., 2012]). There has been little work done on the
process mechanics that produce cascade morphology. The onset criterion for in-channel debris flows,
however, can be framed in terms of a bankfull Shields stress, 7j;, relative to a critical Shields stress for
bed failure, 7} i, [Takahashi, 1978; Prancevic et al., 2014], which we explore further below as a potential

discriminator for cascade morphology.

3. Model Development

Here we combine relations from previous work in sediment transport and hydrodynamics to derive expres-
sions that show explicitly the dependence on bed slope for the controlling process variables: Froude number,
width-to-depth ratio, jamming ratio, and the ratio of the bankfull Shields stress to the critical Shields stress for
in-channel debris flow initiation. In all cases, we chose bankfull flow as our reference condition for formative
flows [e.g., Parker et al., 1998].

Under the assumptions of normal (i.e., steady and uniform) flow, the Froude number by definition can be
written as

Fr=4/— (1)

where Cis a frictional resistance coefficient,
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u~ is the bed shear velocity and U is the cross sectionally averaged flow velocity [Garcia, 2008]. We use the
relation of Ferguson [2007] for Cy, which has been found to be accurate across a wide range of flow conditions
common to mountain streams [Rickenmann and Recking, 2011]

E — a1 (H/DSO) o 3)
T e ()]

where a; = 6.5 and a, = 2.5 are empirical constants. Equation (3) requires an expression for H/Dsq, which likely
varies with bed slope. Here we utilize a common assumption that coarse-grained rivers evolve to a threshold
state such that the bankfull Shields stress does not significantly exceed the critical Shields stress for sediment
transport [Parker, 1978; Paola et al., 1992]. That is

Toe = IT. (4)

The parameter r varies with the Reynold’s particle number, Re,,, but is a constant near unity (1.2 < r < 1.6) for
large Rey, [Parker, 1978; Parker et al., 2007; Trampush et al., 2014], with r closer to 2 in rivers with high sediment
supply [Pfeiffer et al., 2017]. Under the assumption of normal flow

. RS
Tre =
bf R DSO

(5)

where R = 1.65 is the submerged specific gravity of the sediment and R, is the bankfull hydraulic radius. For
the critical Shields number, we follow Lamb et al. [2008]

Tt =0.155°%. (6)

Combining equations (1)-(6), the Froude number can be expressed as

o (05352*?) 1 @,0.151R
Fr =% = 7)

1/2 0.25 1/2
o) @] T [ @

which is now an explicit function of bed slope and a number of constants.

To express the bankfull width-to-depth ratio (B/H) and jamming ratio (B/Dg,) as functions of bed slope, we use
the semiempirical relations of Parker et al. [2007] for bankfull depth, width, and slope,

H= Q*° ®)
g'/s

4.63 Q 0.0667

B= "0 ——- 9)
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Figure 2. Channel state dimensionless variables as a function of bed slope, S. Model results are shown with black lines
(where the solid lines denote the slope range of the data from which the Parker et al. [2007] relationships were derived),
thresholds previously proposed are shown by the red dashed lines, and the median of the field data are plotted for each
channel morphology (alternate bar data are colored red, plane bed data are colored blue, step-pool data are colored
orange, and cascade data are colored green). Error bars show the central 50% of the data. (a) Froude number (equation (7))
plotted as a function of slope using a; = 6.5, a = 2.5, and r ranging from 1.2 (lower gray line) to 1.6 (upper gray line), with
r=1.4 as the best fit to the data; (b) jamming ratio (equation (12)) plotted as a function of slope with r ranging from 1.2
(lower gray line) to 1.6 (upper gray line), with r = 1.4 as the best fit to the data with Dg4/D5q = 2; (c) width-to-depth ratio
(equation (11)) as a function of slope; and (d) ratio of bankfull shear stress to the shear stress needed for debris flow
initiation (equation (14)) as a function of slope where 5 = 0.4 and the failure plane friction angle (¢,) ranges from 40 (upper
gray line) to 60° (lower gray line) [Selby, 1993], with the best fit to the data for ¢, = 50°.

where g is gravity, Q is the volumetric bankfull water discharge, and Ds is the median diameter of the bed
sediment. Combining equations (8)-(10), we find that B/H can be written as a function of bed slope alone

B 7.66 an

H - SOAZ
To calculate the jamming ratio as a function of S, we combine equations (4)-(6) and (11), and set g—;‘: =2
[Church and Rood, 1983],

B 2.3Rr
D784: 5095 (12)

Finally, to get the ratio of the bankfull Shields stress to the critical Shields stress for in-channel debris flow
initiation, we combine equations (4) and (6) with the relation for the critical Shields stress for in-channel

debris flow initiation, 7 4, [Takahashi, 1978; Prancevic et al., 2014]

S
T = (1—n)(tan ¢o*5)*§ (13)
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Figure 3. (a) Predictions for the channel morphology as a function of bed slope, where the vertical dashed lines indicate
the transition to new channel bed states based on our theory and thresholds shown in Figure 2; (b) histogram of alter-
nate bar data with logyg-slope bin widths of 0.25, where the red outlines indicate the total number of alternate bar streams
in each bin and the filled region indicates the number of those streams that meet the condition of having a width-to-depth
ratio > 12; (c) histogram of the plane bed data with logg-slope bin widths of 0.25, where the solid blue outlines indicate
the total number of plane bed streams in each bin, the dashed blue lines indicate the number of those streams that
have Froude numbers, Fr, > 0.7 and the filled region indicates those streams with width-to-depth ratios <12; (d) histogram
of step-pool data with logqg-slope bin widths of 0.25, where the solid orange outlines indicate the total number of step-
pool bed streams in each bin, the dashed orange lines indicate the number of those streams with Fr > 0.7, and the filled
regions indicate those streams with jamming ratios <15; (e) histogram of cascade data with logo-slope bin widths of 0.25,
where the solid green outlines indicate the total number of cascade streams in each bin and the filled regions indicate
those streams with Tgf/’::,df >0.2; and (f) normalized probability density functions for each stream type (i.e., the area under
the curve is equal to 1).

where 7 is bed porosity, and ¢, is the failure plane friction angle. The resulting expression

T r0.155%%°
g (1—m)(tan gy —S) —3

is a function of bed slope and bed material properties (i.e. r, , and ¢,). We assume friction angles in the
range of 40° to 60° (typical for natural materials [Selby, 1993]) and a porosity of 0.4 (typical of uniform gravel).

4. Data Compilation

To compare our theoretical predictions with field data, we have compiled data from 373 alluvial stream
reaches (14 cascade (median r = 2.4), 166 step-pool (median r = 1.2), 110 plane bed (median r = 1.2), and
83 alternate bars (median r = 1.3), where r is calculated from equations (4)-(6)). Many of these reaches were
included in previous data compilations [e.g., Trampush et al., 2014; Li et al., 2015], though we have compiled
additional data (supporting information Table S1).

5. Results

Equation (7) predicts that Froude number for natural streams steadily increases with bed slope up to
S = 0.018, beyond which it decreases (Figure 2a). The maximum Froude number ranges between 0.7 and
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0.8, which are the minimum Froude numbers predicted by potential flow theory (lower red line). The data
follow the model trend for r = 1.4, with the exception of cascade streams, for which the model overpredicts
the Froude numbers found in most cascade reaches. The jamming ratio is predicted to decrease with bed
slope (power law slope of 0.95; Figure 2b), and equation (12) matches well the median jamming ratio for
all stream morphologies. Step formation has been observed in both natural and flume channels for jamming
ratios less than or equal to 15 (red dashed line, Figure 2b) [Church and Zimmermann, 2007], which coincides
with the median jamming ratio for step-pools. In comparison to the jamming ratio, the bankfull width-to-
depth ratio (Figure 2c) is predicted to be a weaker function of bed slope (5°2); the data follow the model
trend, with the exception of cascade streams, in which the central 50% of the reported reaches have a lower
than expected bankfull width-to-depth ratio. The ratio T;f/l';df increases nonlinearly with bed slope and r
(Figure 2d).

Combining the proposed thresholds for the onset of different reach types with model predictions for the bed
slopes at which these conditions are expected to be met (Figure 2), we find that certain bed slopes should
correlate to unique channel morphologies, whereas other ranges of bed slopes are predicted to have multi-
ple stable channel states (Figure 3a). Channels with S < 0.009 are predicted to have alternate bar morphology
because steeper slopes tend to have narrower width-to-depth ratios. Indeed, most alternate bar data fall in
this range (Figure 3b); however, approximately half of the data for plane bed streams (Figure 3c) also occur
at $ < 0.009. Alternate bars are predicted to occur up to bed slopes as steep as S = 0.1 because this range in
slopes satisfies the criteria of B/H > 12. However, alternate bars are not observed on slopes steeper than 0.025
within our data set.

Step-pool steams are predicted to be stable for 0.009 < S < 0.06 if they are initiated by the antidune mechan-
ism (“Step-pool Froude,” Figure 3a) because both lower and higher channel gradients have too small of
Froude numbers. However, this range of slopes is also predicted to support the formation of alternate bars
and plane bed morphologies. Indeed, alternate bar (Figure 3b), plane bed (Figure 3c), and step-pool
(Figure 3d) data do plot within this slope range. Step-pools that originate via the jamming mechanism are
expected to form at S > 0.06 (Figure 3a) because this regime correlates with the jamming criteria
B/Dg4 < 15. Over half of our step-pool data have 0.06 < S < 0.2 (Figure 3d).

We observe that channels with zj/7¥ . > 0.2 (Figure 3e) are likely to have a cascade morphology. With this
criterion, the majority of the cascade data plot in the regime S > 0.1. As plane bed is often assumed to occur
at low channel width-to-depth ratios (B/H < 12), prior to the onset of alternate bars [e.g., Colombini et al.,
1987], we would predict they occur at bed slopes greater than 0.1 (Figure 3a), which is true for only a small
subset of the data.

6. Discussion and Conclusion

Our analysis suggests that bed slope is often the best discriminant of the morphological characteristics of
steep channel beds because the process variables that control the channel bed state covary with slope for
most natural streams (Figure 2). Most of the alternate bar reaches have S < 0.02 because these also have
bankfull width-to-depth ratios greater than 12. Most step-pool streams have 0.002 < S < 0.2 because this
range in bed slopes correlates either with jamming ratios less than 15, especially those found at slopes
greater than 0.06 (as predicted), or Froude numbers greater than 0.7. Cascade reaches tend to have
5> 0.1 and, for all but one cascade stream (1 out of 14), this correlates with a zj;./z} 4 > 0.2.

Plane bed is a notable exception to the good correlation between controlling variables for a given channel
morphology and bed slope. Plane bed streams tend to have low Froude numbers (< 0.7) and width-to-depth
ratios greater than 12, which goes against the predictions set from potential flow theory for upper plane bed
(i.e, transitional Froude numbers) and linear stability analysis (i.e., low width-to-depth ratios). There is a stable
regime for lower (sandy) plane beds characterized by large particle Reynold’s numbers (>100) and moderate
Shields numbers (1 < z* < 10) [Lamb et al., 2012], but we find that in this phase space gravel plane bed data
cannot be differentiated from alternate bar and step-pool data.

Setting r = 2.4 for channels with high sediment supply [Pfeiffer et al., 20171, the model is generally a poorer
predictor of the observed channel state for a given bed slope, which supports our assumption of channels
near the threshold for sediment transport at bankfull. Large roughness elements (i.e., immobile boulders),
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woody debris, and/or bedrock exposure may also affect r by partitioning stress away from the bed [e.g.,
Buffington and Montgomery, 1999], although it is unclear if drag from large roughness elements systemati-
cally changes with bed slope [Zimmermann, 2010; Lamb et al., 2017].

By combining previous theory with proposed thresholds for channel state emergence and stability, we see
that certain bed slopes predict unique channel morphologies, while other slope ranges predict the occur-
rence of up to three different channel bed types (Figure 3a). The existence of this overlap between predicted
channel state and bed slope further suggests that slope is unlikely to be a main control, but rather there are
different competing processes and, depending on the local conditions (i.e., confinement, grain size, and sedi-
ment supply), this competition may lead to the emergence of different channel morphologies. For example,
while alternate bars are predicted to form at fairly steep slopes (bed slopes up to 0.1), channel confinement
combined with the influx of large sediment from debris flows or landslides at these steeper slopes might
result in more favorable conditions for step-pool formation. In fact, within the field data, we observe an
abrupt handoff between alternate bar and step-pools around slopes of ~0.02 to 0.03, which is the lower
bound for debris flow deposition based on case studies in the Oregon Coast Range and other steep environ-
ments [see Table 1 in Stock and Dietrich, 2003]. Alternate bar and plane bed streams are also observed to
occupy a similar range of slopes in the field (though plane beds are observed up to slopes >0.1), which
was initially observed by Montgomery et al. [1995], but are only predicted to overlap in a narrow range of
slopes (0.009 and 0.06). This suggests that while a large width-to-depth ratio (>12) appears to be important
for the development of alternate bars, there are other factors or processes that must ultimately control
whether alternate bars or a plane bed state will emerge. The predominance of one channel state over the
other could be due to differences in confinement, sediment supply, grain size distributions, or nearby pertur-
bations (e.g., a bridge or road, large woody debris, or an upstream meander bend) [Lisle et al, 1991;
Montgomery et al., 1995; Livers and Wohl, 2015].

Regression modeling that assumes that bed slope, grain size, and channel width are independent variables
will overemphasize the importance of slope. This approach does not explicitly state the physical mechanisms
underlying channel form and bed form formation. In addition, the correlation we find between controlling
variables and slope may not hold for all settings. For example, in laboratory flumes or with the introduction
of different materials to a river system (e.g., ravel following a fire or woody debris), our predictions of the
stable channel configuration may be incorrect. Flume experiments by Lisle et al. [1991] and Weichert et al.
[2008] resulted in the development of alternate bars at slopes between ~0.03 and ~0.1, which is within the
bed slope range predicted by theory (Figure 3a), but outside of the range where alternate bars are typically
observed in nature. Weichert et al. [2008] attribute the stability of alternate bars over step-pools in these
experiments to high jamming ratios (B/Dg4 > 15), where granular chains did not extend the entire channel
width. Designing experiments or artificial channels to have a specific channel morphology may also be pro-
blematic, especially if plane bed conditions are desired. There are no simple criteria that distinguish plane
bed data from other channel types, aside from having a median bed slope between that for alternate bar
and step-pool channels (Figure S1). The slope distribution of all three channel types overlap, however, such
that it is just as likely bars or steps will develop as a plane bed.

There has been much debate as to whether step-pools are the result of keystone deposition under supercri-
tical flow conditions [e.g., Grant et al., 1990] or the development of a jammed state in streambed sediments
[Church and Zimmermann, 20071. While the mechanism cannot be identified from our data set, we do predict
that step-pools that form under high Froude conditions would likely occur at lower slopes (< 0.06) than
jamming-dominated step-pools (> 0.06) (Figures 3a and 3d). This is close to the transition slope noted by
Church and Zimmermann [2007], who determined that below slopes of ~0.07, step-pools appear to develop
under high transport rates in a manner consistent with antidunes, whereas for gradients greater than 0.07,
clasts are jammed and remain anchored, creating stable steps. It is possible that part of the reason we see
a mix of step-pool, plane bed, and alternate bar streams between 0.009 < S < 0.06 is due to changes in chan-
nel states over flood timescales [e.g., Turowski et al., 2009]. In contrast, channel forms may be more persistent
in steeper rivers because of jamming [Church and Zimmermann, 2007] or infrequent large magnitude dis-
charges capable of removing steps [Kondolf et al., 1991].

We proposed that a controlling variable for the onset of cascade morphology is the ratio of the bankfull
Shields stress to the critical Shields stress for debris flow initiation, with the expectation that we would
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observe cascade stream morphologies when the ratio nears unity if cascade channels are related to in-
channel debris flow initiation. The field data show that none of the stream types have ratios close to one,
but cascade streams do have the highest observed ratios, with a median of 0.5, while alternate bar, plane
bed, and step-pool streams have median ratios closer to 0.1. The fact that cascade streams have /7]  less

than unity could be because cascade morphologies are not related to debris flows, debris flows initiate from
landslides, not by in-channel bed failure, or that cascade morphology marks the downstream extent of debris
flow transport and deposition, rather than initiation.

Interestingly, while the empirical predictions for bankfull width, depth, and slope (equations (8)-(10)) are
functions of gravity (H ~ g~ %2, B~ g %2, 5 ~ g%, which can have implications for hydraulic reconstructions
on other planetary surfaces, such as Mars, the derived expressions for the Froude number, width-to-depth
ratio, jamming ratio, and the ratio of the bankfull Shields stress to the critical Shields stress for in-channel deb-
ris flow initiation are all independent of gravity. However, all of our relations, with the exception of the width-
to-depth ratio, are functions of submerged specific density (R). This implies different bed morphologies for a
given channel slope on, for example, Titan, where R might range from 1.2 to 2.3 [Burr et al., 2006].

In conclusion, we synthesized relationships that highlight the bed slope dependence of hydraulic and geo-
metric variables hypothesized to control channel state in mountain streams. In doing so, we found that
the controlling variables correlate with bed slope such that certain bed slopes should correspond to unique
channel states, whereas others correspond to multiple channel states. The fact that multiple channel
morphologies are predicted and observed within certain bed slope regimes points to a competition of
underlying processes where the “winner” is likely dictated by local conditions. Recognizing that channel type
cannot simply be correlated with bed slope is important when predicting channel (and hydraulic) conditions
in unigue environments, especially in places impacted by human or natural disturbances (e.g., postfire stream
networks), in artificial streams or flumes, or other planetary surfaces.
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