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Abstract Large ripples with meter-scale wavelengths are ubiquitous across Mars. Curiosity’s traverse of the
Bagnold Dune Field revealed a morphologic diversity of large Martian ripples that helps constrain their
formative mechanism. Large ripples develop in isolated fields and on dunes. They form transversely and
obliquely to longitudinally to the net sand-flux direction in unimodally and bimodally distributed very fine to
very coarse sand. They have either straight or sinuous crestlines. Inactive ripples are covered with dust,
whereas migrating ripples are dust free. Here we present a unifying view of ripples that form in near-bed
sediment-transport conditions (encompassing fluid-drag and coarse-grained ripples) to explain the range of
large-Martian-ripple morphologies and expand the use of bedforms as environmental indicators.

Plain Language Summary Large sand ripples with meter-scale crest-to-crest spacings abound on
the Martian surface but are not found in terrestrial sandy deserts. Along its traverse through the Bagnold
Dune Field, the Curiosity rover witnessed a rich diversity of such large ripples, both in terms of their shape and
of their behavior. Rover observations help understand how these mysterious large Martian ripples form. Here
we present a unifying view of ripples that form when grains are mobilized near the sediment bed by
various fluids and across planets. Such an understanding of the formation mechanics of similar ripples will
enable scientists to use the ripples’ imprints on landscapes and in rocks to infer modern and past
environmental conditions.

1. Introduction

Wind has shaped the Martian landscape for much of its history and continues to play a major role today
(Bridges et al., 2014; Chojnacki et al., 2018; Hayward et al., 2007). Wind-blown bedforms cover much of the
modern Martian landscape and signal the dominance of winds as a geomorphic agent on Mars (supporting
information Figure S1a). Sand dunes, the largest bedforms, grow to hundreds of meters in wavelength and
actively migrate with sand fluxes similar to those of some terrestrial dunes (Ayoub et al., 2014; Bridges
et al., 2012, 2017; Chojnacki et al., 2011, 2015; Silvestro et al., 2010, 2013). Smaller bedforms with crest-to-crest
wavelengths between ~1 and ~5 m are readily observable from orbit and are ubiquitous on Mars (e.g.,
Figure S1c; Bridges et al., 2007; Lapotre et al., 2016). Ripples with ~1- to 5-m wavelengths, hereafter referred
to as large Martian ripples, actively migrate on larger dunes or in sand sheets. Large Martian ripples do not
have clear terrestrial analogs and their formation mechanisms remain poorly understood. They have been
proposed to be analogous to the more familiar decimeter-scale terrestrial impact ripples (Almeida et al.,
2008; Durán et al., 2014) or a different type of bedform altogether (Lapotre et al., 2016).

Ground observations of eolian bedforms occurred soon after the Mars Exploration Rovers landed in 2004
(Greeley et al., 2004; Sullivan et al., 2005, 2008). The Spirit rover observed decimeter-scale ripples migrat-
ing on top of meter-scale ripples that made up a sand sheet at El Dorado (Sullivan et al., 2008). The Mars
Exploration Rovers also observed coarse-grained ripples, armored with grains >2 mm in diameter and
lacking superimposed smaller ripples (Jerolmack et al., 2006; Sullivan et al., 2008). Along its traverse
through a two-phase scientific campaign at the Bagnold Dunes (Bridges & Ehlmann, 2018; Lapotre &
Rampe, 2018), Curiosity made detailed observations of a diverse suite of eolian bedforms—small ripples

LAPOTRE ET AL. 10,229

Geophysical Research Letters

RESEARCH LETTER
10.1029/2018GL079029

Special Section:
Curiosity at the Bagnold Dunes,
Gale Crater: Advances in
Martian Eolian processes

Key Points:
• Martian ripples are diverse in

morphology, dynamics, and activity
• Large Martian ripples belong to a

family of bedforms that forms when a
significant fraction of sediment
transport occurs near the bed

• Near-bed-transport bedforms are
found across environments and
planets and may prove useful
quantitative paleoenvironment
indicators

Supporting Information:
• Supporting Information S1

Correspondence to:
M. G. A. Lapotre,
mlapotre@fas.harvard.edu

Citation:
Lapotre, M. G. A., Ewing, R. C., Weitz,
C. M., Lewis, K. W., Lamb, M. P.,
Ehlmann, B. L., & Rubin, D. M. (2018).
Morphologic diversity of Martian
ripples: Implications for large-ripple
formation. Geophysical Research
Letters, 45, 10,229–10,239. https://doi.
org/10.1029/2018GL079029

Received 31 MAY 2018
Accepted 18 JUL 2018
Accepted article online 25 JUL 2018
Published online 12 OCT 2018

©2018. The Authors.
This is an open access article under the
terms of the Creative Commons
Attribution-NonCommercial-NoDerivs
License, which permits use and distri-
bution in any medium, provided the
original work is properly cited, the use is
non-commercial and no modifications
or adaptations are made.

http://orcid.org/0000-0001-9941-1552
http://orcid.org/0000-0001-6337-610X
http://orcid.org/0000-0002-4646-0825
http://orcid.org/0000-0003-3412-803X
http://orcid.org/0000-0002-5701-0504
http://orcid.org/0000-0002-2745-3240
http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://dx.doi.org/10.1029/2018GL079029
http://dx.doi.org/10.1029/2018GL079029
https://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1944-8007.BAGNOLD-DUNES2
https://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1944-8007.BAGNOLD-DUNES2
https://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1944-8007.BAGNOLD-DUNES2
http://dx.doi.org/10.1029/2018GL079029
http://dx.doi.org/10.1029/2018GL079029
http://dx.doi.org/10.1029/2018GL079029
mailto:mlapotre@fas.harvard.edu
https://doi.org/10.1029/2018GL079029
https://doi.org/10.1029/2018GL079029


migrating over large ripples, which in turn migrate over larger dunes (Ewing et al., 2017; Lapotre et al.,
2016), as well as isolated large ripples and coarse-grained ripples (see Table S1 for a summary of ripple
characteristics).

In this manuscript, we supplement observations made during Phase 1 of the campaign (Ewing et al., 2017;
Lapotre et al., 2016) with new data acquired during Phase 2 and review the morphology, dynamics, grain
size, and activity of bedforms encountered along Curiosity’s traverse through the Bagnold Dunes
(Figure S1b; Table S1) as it pertains to understanding the formation of large Martian ripples in fine mono-
disperse sand (i.e., sand with a unimodal and narrow grain-size distribution). Altogether, observations
from the campaign further support the idea that large Martian ripples are a class of bedform distinct from
impact ripples. Based on a comparison between large Martian ripples and a suite of candidate analog ter-
restrial bedforms that share similar morphologies and dynamics, we propose that large Martian ripples
belong to a family of bedforms that form across fluids and planets when a significant fraction of the sedi-
ments is transported near their threshold of motion and close to the bed.

2. Morphologic Diversity of Ripples Observed by Curiosity at Gale Crater
2.1. The Size Gap Between Small and Large Ripples

Phase 1 of the Bagnold Dunes campaign showed the coexistence of three distinct bedform-wavelength
populations: decimeter-scale ripples superimposed on the stoss slope of meter-scale ripples that were them-
selves superimposed on decameter-scale barchan dunes (Figure 1a; Lapotre et al., 2016). Orbital measure-
ments of bedform wavelengths from 11 Martian dune fields combined with rover measurements of small
and large Martian ripples demonstrated the presence of three main distinct bedform modes across Mars
(Figure 1a; Lapotre et al., 2016). Orbital and ground data sets overlap in the ~0.8- to 3-m range, demonstrating
the continuity of the compilation across scales. No bedforms within the ~20- to 80-cm wavelength range
were found inmonodisperse sand during the campaign, suggesting that small and large ripples form two dis-
tinct wavelength populations.

2.2. Morphology and Dynamics of Large Ripples

During the campaign, large Martian ripples were found in isolated ripples fields (Lapotre & Rampe, 2018;
Weitz et al., 2018) and on top of dunes (Ewing et al., 2017; Lapotre et al., 2016). Large ripples found on the
stoss slopes of both Namib and High Dunes (Figure S1b for location) had highly sinuous crests and asym-
metric profiles (Figures 1a and 1e). This morphology differed significantly from the straight crests and more
symmetric profiles of small ripples superimposed on the large ripples (Figure 1; Table S1) and from the
straight-crested large ripples formed along the steep primary and secondary lee slopes of Namib Dune
(Ewing et al., 2017). The straight crests of the small ripples are consistent with impact ripples (Table S1)
and the straight-crested large ripples formed on steep slopes are consistent with straightening by gravita-
tionally driven along-crest transport (Rubin, 2012). The slip faces of large ripples displayed grainfall, grainflow,
and deflected small ripples, none of which are present on smaller ripples (Figure 1b). Ubiquitous lee-slope
grainfall indicates settling of sand out of suspension past ripple crests, grainflow indicates lee-slope overstee-
pening and subsequent avalanching, and deflected ripples indicate secondary lee-slope winds (Figure 1b). All
demonstrate the strong feedback between winds and ripple topography. With the exception of few longitu-
dinal ripples in the horns of Namib Dune (morphologic analog to longitudinal spurs, Figure S2a; Ewing et al.,
2017), large ripples observed from the ground prior to Phase 2 formed primarily transverse (with a possible
oblique component, e.g., Silvestro et al., 2016) to the net sandflux direction. Longitudinal (or oblique) ripples,
however, were identified from orbit further south within the Bagnold Dunes (Ewing et al., 2017; Silvestro
et al., 2016).

At the Mapleton site (Phase 2; Figure S1b for location), Curiosity observed a set of straight-crested large rip-
ples, with typical wavelengths of ~2 m (Figures 1c and 1e). There, the crests of large ripples were oriented
longitudinally to the axis of the Nathan Bridges Dune (039–042° and 042–045° for the dune and ripples,
respectively), which formed either longitudinally or obliquely to the net sand-flux direction (Figure S1b;
Silvestro et al., 2016). The Mapleton large ripples (Figure 1c) were morphologically different from large ripples
formed on High and Namib Dunes (Table S1). They lacked slip faces, grainfall and grainflow deposits, and
havemuchmore symmetric profiles (Figures 1c and 1e). Large ripples were covered with small ripples migrat-
ing along the large-ripple crests (Figure 1c). The small ripples near the crests on the NW-facing sides were
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Figure 1. (a) Mosaic of Mast Camera (Mastcam) images (mcam005410, sol 1192) showing two scales of ripples on the stoss
slope of Namib Dune. Left inset shows an overview map of Curiosity’s traverse through the Bagnold Dunes centered on
4°42’00” S, 137°21’30” E (N = Namib Dune, H = High Dune, NB = Nathan Bridges Dune, MDI = Mount Desert Island; see
Figure S1b for a more detailed map with location names). Right inset shows the wavelength distribution of Martian eolian
bedforms, combining ground and orbital measurements (Lapotre et al., 2016). Note that whereas magnitude of the
probability density functions (PDFs) cannot be compared across data sets, peaks within each data set allow the identifi-
cation of three distinct wavelength modes. (b) Mastcam mosaic (mcam005597, sol 1221) of large transverse ripples
showing grainfall, grainflows, and deflected small ripples at the Gobabeb site on Namib Dune (Figures S1b and S1c).
(c) Mastcammosaic (mcam008154, sol 1601) of large longitudinal ripples at the Mapleton site on the Nathan Bridges Dune
(Figure S1b). (d) Mastcammosaic (mcam009157, sol 1752) of transverse coarse-grained ripples at the Enchanted Island site
(Figure S1b). There, rare coarse-grained ripples were observed with wavelengths in the ~20- to 80-cm range (near the
image center). (e) Profiles of a large transverse ripple at Gobabeb (x0-x″; Figure 1b; Figures S1b and S1c for location), a large
longitudinal ripple at Mapleton (y0-y″; Figure 1c), and a coarse-grained ripple at Enchanted Island (z0-z″; Figure 1d). The
Gobabeb profile was derived from a digital elevation model built from Mastcam stereopairs, whereas the Mapleton and
Enchanted Island digital elevation models were generated from Navigation Cameras stereopairs. All profiles were median-
filtered with a 10-cm window size. (f) Mars Hand Lens Imager (MAHLI) image (1242MH0005740000403707R00, sol 1242) of
sand grains at a ripple crest at Gobabeb (Otavi target), with kernel density of grain size overlain. (g) MAHLI image
(1604MH0004580000602124R00, sol 1604) of sand grains at a ripple crest at Mapleton (Flume Ridge target), with kernel
density of grain size overlain. (h) MAHLI image (1751MH0007220000700514R00, sol 1751) of sand grains at a ripple crest at
Enchanted Island, with kernel density of grain size overlain. Panels (f)–(h) are exactly 1 cm across their width, allowing for
direct visual comparison of grains between the three sites. Grain-size data are presented in Weitz et al. (2018).
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perpendicular to the large-ripple crests but changed orientation to oblique in the troughs and up the SE-facing
sides of the large ripples (Figure 1c). This indicates that the last formative wind for small ripples was from the NE
direction and that they were responding to the secondary flows induced by large-ripple topography. Despite
interactions between small ripples and large-ripple crests, the latter remained sharp and clearly defined, indicat-
ing that small impact ripples are part of the formative process rather than reworking larger ripples (Figure 1c).
We thus interpret that the large, straight-crested ripples formed longitudinally (or obliquely) to the net sand-flux
direction, consistent with previous orbital inferences (Silvestro et al., 2013, 2016).

2.3. Grain Sizes and Bedform Activity

Orbiter-based observations suggest that Martian dunes are composed of coarse sand (Edgett & Christensen, 1991;
Pelkey & Jakosky, 2002). However, in the actively migrating transverse and longitudinal large ripples at the
Bagnold Dunes, rover measurements using the Mars Hand Lens Imager (MAHLI) indicated very-fine-to-fine sand
(median 100–150 μm; Figures 1f and 1g; Ehlmann et al., 2017; Ewing et al., 2017; Weitz et al., 2018), and previous
estimates from midinfrared spectroscopy likely overestimated grain size due to subpixel sand/bedrock mixing
(Edwards et al., 2018). One large ripple at the base of the stoss slope of High Dune consisted of medium sand
(median ≈ 350 μm) at its crest. Larger grains are expected at the base of High Dune because it occurs at the defla-
tionary, trailing edge of the dune field where coarse grains should concentrate (Ewing et al., 2017; Lapotre et al.,
2016). High Dune is also surrounded by bedrock onwhich larger grains could readily move (Baker, Newman, et al.,
2018) until coming to rest at the base of the sandy, steeper dune stoss slope. Grain-size measurements performed
along the crests of isolated ripples or in ripple fields south of the Bagnold Dunes (e.g., Figure 1d; Figure S1b for
location) displayed medium sand (~300–500 μm; Figure 1h). The coarsest grains were measured at the crest of
the Schoolhouse Ledge isolated ripple (median ≈ 480 μmwith ~1% grains>1 mm; Figure S1b; Weitz et al., 2018).

Although MAHLI cannot resolve individual dust grains, fine Martian dust has elevated S and Cl contents,
which are detectable by the Alpha Particle X-Ray Spectrometer (APXS) and ChemCam instruments
(Ehlmann et al., 2017; Lasue et al., 2018). The active sands of Gobabeb and Ogunquit Beach (Figure S1b
for location) are depleted in H, S, and Cl compared with previously analyzed Martian regolith and sand
(e.g., Leshin et al., 2013). This indicates very low to no dust within active dune sands (Cousin et al.,
2017; Ehlmann et al., 2017; Gabriel et al., 2018; O’Connell-Cooper et al., 2017, 2018; Stern et al., 2018)
and corroborates orbital and rover spectral observations of sand (Johnson et al., 2017, 2018; Lapotre,
Ehlmann, et al., 2017). In contrast to active ripples, some coarse-crested isolated large ripples and ripple
fields display a thin veneer of dust aggregates with elevated H, S, and Cl, indicating they have not been
recently active (O’Connell-Cooper et al., 2018; Weitz et al., 2018).

High Resolution Imaging Science Experiment (HiRISE) images showed both large transverse ripples and
dunes migrating at rates of ~0.1–1.7 m/Earth year and ~0.2 m/Earth year, respectively, near the rover traverse
(Bridges et al., 2017; Silvestro et al., 2013, 2016). The relatively low sand-flux associated with both large-ripple
and dune migration is consistent with transport near the impact threshold (section 4.2; Baker, Lapotre, et al.,
2018). Eolian activity, as determined from orbit (Ayoub et al., 2014), and in situ from the motion of coarse
grains on bedrock along Curiosity’s traverse (Baker, Newman, et al., 2018), is greatest during southern sum-
mer when Mars is near perihelion. Consistent with this observation, Phase 1 of the campaign occurred just
after aphelion during southern fall to winter, and frequent and repeated sol-to-sol observations of eolian bed-
forms did not show significant changes. Rather, rare grain scrambling, two centimeter-scale grainflows, and
one centimeter-scale slump were observed over the course of ~3 months (Bridges et al., 2017).

No direct observations of ripple migration were made during Phase 1 of the campaign, which raises the ques-
tion of the timing of movement of the large and small ripples. However, several observations indicate that the
ripples migrate coevally. For example, grainflows that downlap onto small ripples deflected along a large-rip-
ple lee slope indicate large-ripple lee-slope activity during small-ripple migration (Figure 1b), and in some
areas, small and large ripples formed in the same orientation, implying the same formative wind direction
(Ewing et al., 2017; Lapotre et al., 2016). Further, large ripples have been observed from orbit to migrate sea-
sonally near perihelion (Ayoub et al., 2014), and, during Phase 2 of the campaign, which occurred near peri-
helion, the small ripples were observed to migrate at rates of the order of a few centimeters per sol (Baker,
Lapotre, et al., 2018), thus demonstrating the cooccurrence of both small and large-ripple migration near
perihelion. Notably, the lack of reworking of large-ripple crests by small ripples during Phase 2 suggests that
the small ripples contribute to the overall morphology and migration of the large ripples.
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3. Terrestrial Analogs to Large Martian Ripples

The observed diversity and complex behavior of large Martian ripples is not typically recognized in terrestrial
eolian ripples (e.g., Lapotre et al., 2016; Silvestro et al., 2016; Vaz et al., 2017), and as such, they do not have
clear terrestrial analogs. Morphometric characteristics of bedforms are commonly used to constrain their for-
mation processes (Ashley, 1990; Werner et al., 1986; Zimbelman et al., 2012). Here we present the morpho-
metric characteristics of four bedform types as a baseline to identify potential terrestrial analogs to large
Martian ripples and constrain their formation mechanism.

3.1. Subaqueous Ripples
3.1.1. Morphology
Current ripples form in sand under unidirectional currents in water. They have equilibrium wavelengths of
~10–20 cm in freshwater and are distinct from larger, meter-scale fluvial dunes (Ashley, 1990; Lapotre,
Lamb, et al., 2017). Current ripples have complex, typically three-dimensional and sinuous crestlines
(Figure 2a; Rubin & McCulloch, 1980; Southard & Boguchwal, 1990) and asymmetric profiles (Figure 2f) that
resemble those of transverse large Martian ripples (Figures 1a, 1b, and 1e; section 2.2). In contrast, wave rip-
ples form in bidirectional (reversing) flows and typically have linear crestlines and symmetric profiles
(Figures 2b and 2f; Miller & Komar, 1980), morphologically (but not dynamically; section 4.1) similar to those
of longitudinal large Martian ripples (Figures 1c and 1e; section 2.2).
3.1.2. Formation
Subaqueous ripples are often referred to as drag ripples because they form in response to a spatial lag
between the loci of maximum fluid shear stress, maximum sand flux, and bed topography (Charru et al.,
2013; Richards, 1980; Smith, 1970). Current ripples form at low particle Reynolds numbers (Rep) and Shields
stresses ( τ� ) (Southard & Boguchwal, 1990; Van den Berg & Van Gelder, 2009), typically under bedload-
transport conditions (Richards, 1980) in laminar (with respect to Rep; Engelund & Hansen, 1967) and hydrau-
lically smooth (Nikuradse, 1933) flows. However, current-ripple-stability boundaries do not directly coincide
with bedload/suspension, laminar/turbulent, or smooth/rough transitions (Lapotre, Lamb, et al., 2017).
Lapotre, Lamb, et al. (2017) proposed that the stability and equilibrium wavelength of current ripples (λ)
can be predicted from grain diameter (D), sediment specific submerged weight (Rg, where R ¼ ρs�ρf

ρf
, and ρs

and ρf are sediment and fluid densities, respectively), fluid shear velocity (u�), and fluid kinematic viscosity

(ν) through a relationship between the Yalin number, χ ¼ Repτ
1=2� ∝ Lsatu�

ν (with Rep ¼ u�D
ν and τ� ¼ u2�

RgD), and a

dimensionless wavelength, λ� ¼ λu�
ν . Dimensionless wavelength can be envisioned as a ripple-scale

Reynolds number and χ as a Reynolds number where the length scale is proportional to a saturation length,
Lsat (Lapotre, Lamb, et al., 2017), which was shown to control the initial wavelength of current ripples (Charru
et al., 2013). From a comprehensive data compilation, Lapotre, Lamb, et al. (2017) showed that ripples form
for χ < ∼ 4 � 9, and that in that regime

λ�≈2500χ
1=3 ; (1)

or in dimensional form,

λ≈2500
ν
2=3D

1=6

Rgð Þ1=6u1=3�
: (2)

Importantly, equation (2) shows that fluid density affects drag-ripple wavelength through its effect on fluid
kinematic viscosity (Grazer, 1982; Lamb, Grotzinger, et al., 2012) and specific submerged density of the sedi-
ment and that λ decreases when ρf increases.

Finally, the geometry of subaqueous ripples forming under varying flow directions is a function of the time
the bedform takes to adjust to changes in flow direction (and thus a function of its volume relative to the
volume of sediment transported during individual flow events; Rubin & Ikeda, 1990). For example, in the case
of orbital wave ripples (i.e., those wave ripples with wavelengths proportional to wave-oscillation amplitude
near the bed) without superimposed net current, ripple wavelength varies with sediment and fluid properties
as well as wave frequency and near-bed maximum wave orbital velocity (Pedocchi & García, 2009b, 2009a).
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Figure 2. Terrestrial analogs to large Martian ripples. (a) Current ripples from a dry riverbed in Death Valley, California.
(b) Orbital wave ripples created in a flume experiment (Nienhuis et al., 2014; Perron et al., 2016). (c) Coarse-grained rip-
ples from Oceano Dunes, California. (d) Damp beach ripples, Playa del Rey, California. (e) Large sinuous ripples forming
on the lee slope of a dune at White Sands National Monument, NewMexico. In (d) and (e), large ripples are highlighted with
large one-sided arrows. (f) Profiles of a current ripple (x0-x″; Figure 2a), a wave ripple (y0-y″; Figure 2b), and a coarse-grained
ripple (z0-z″; Figure 2c). Profiles x0-x″ and z0-z″ were derived from digital elevation models built using the structure from
motion technique with Agisoft software, whereas profile y0-y″ was derived through image analysis using a laser sheet by
Nienhuis et al. (2014).
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3.2. Coarse-Grained Ripples
3.2.1. Morphology
Coarse-grained ripples (also known as megaripples) are eolian bedforms that form at a wide range of wave-
lengths (~20 cm to >300 m) and only arise in polydisperse beds (Figure 2c; Bagnold, 1941; Lämmel et al.,
2018; Yizhaq et al., 2009). Whereas most grains in the troughs of coarse-grained ripples are comprised of fine
sand, coarser grains (typically ~2–4 mm on Earth) concentrate along sometimes complex, sinuous, three-
dimensional crestlines (Bagnold, 1941; Sharp, 1963; Yizhaq et al., 2012), similar to those of transverse large
Martian ripples (Figures 1a and 1b). Like large Martian ripples and Martian coarse-grained ripples
(Figure 1e), terrestrial coarse-grained ripples may have symmetrical or asymmetrical profiles (Figure 2f) and
may be oblique relative to the net sand-transport direction where they form in response to bimodal winds.
Owing to their apparent morphologic similarity, coarse-grained ripples were invoked as possible analogs
for meter-scale Martian bedforms observed from orbit (De Silva et al., 2013).
3.2.2. Formation
The stability and formation of coarse-grained ripples require (i) a bimodal grain-size distribution, and (ii) wind
speeds high enough for fine grains to saltate but low enough for the coarser fraction of grains to only be
mobilized by surface creep through saltation impact (Bagnold, 1941; Yizhaq et al., 2009). Under these condi-
tions, fine and coarse grains may segregate, and local coarsening of the bed leads to the slow formation of
coarse-grained ripples (Ellwood et al., 1975; Sharp, 1963; Yizhaq et al., 2009). As long as wind speeds do
not exceed the saltation threshold for coarse grains, coarse-grained ripples may grow indefinitely; however,
coarse-grained ripples break down to smaller impact ripples if wind speeds temporarily exceed the threshold
of saltation for coarse grains (Bagnold, 1941; Yizhaq et al., 2009). Because of their dune-like size-dependent
shape and the predicted existence of a minimum coarse-grained-ripple size described by a saturation length
scale, coarse-grained ripples were proposed to be reptation dunes (Lämmel et al., 2018).

3.3. Terrestrial Ripples in Monodisperse Sand
3.3.1. Morphology
Bagnold (1941) first described a peculiar set of sinuous transverse eolian ripples that only formed within
restricted experimental conditions in very fine sand at similar wavelengths or slightly larger wavelengths
than the more familiar impact ripples (~15–20 cm). These ripples had long gentle stoss slopes and shorter,
steeper lee slopes. Wilson (1972) later identified rogue ripples in the field that may be analogous to
Bagnold’s ripples but formed primarily longitudinally to the net sand flux. However, to our knowledge, similar
bedforms have not been subsequently recognized or described. In Figures 2d and 2e, we identified terrestrial
decimeter-scale sinuous and asymmetric ripples that formed in monodisperse sand. These bedforms appear
to share striking morphologic and dynamic similarity with large Martian ripples (Figures 1a and 1b).
3.3.2. Formation
Bagnold (1941) hypothesized that his sinuous eolian ripples form analogously to current ripples, making
them eolian drag ripples. Wilson (1972) referred to his longitudinal counterparts to Bagnold’s ripples as aero-
dynamic ripples, by analogy to the hydrodynamic mechanism responsible for current- and wave-ripple forma-
tion. However, wind-drag ripples are not commonly recognized and described in terrestrial sandy deserts,
and their existence should be debated. The crestline geometry of ripples shown in Figures 2d and 2e is diffi-
cult to explain through an impact mechanism, which would straighten the crests through lateral splash in
monodisperse sand (Rubin, 2012). Thus, we propose that these bedforms are candidate terrestrial wind-drag
ripples. Interestingly, equation (2) predicts that terrestrial wind-drag ripples would form at wavelengths of
~10–20 cm, consistent with Bagnold’s experiment and the terrestrial sinuous transverse ripples in fine sand
shown in Figures 2d and 2e.

4. Discussion: A Ripple Continuum Forming Under Near-Bed Transport Conditions
4.1. The Wind-Drag Formation Hypothesis for Large Martian Ripples

On the basis of (i) distinct sizes, (ii) disparate morphologies, and (iii) coeval formation in very-fine-to-fine sand,
Lapotre et al. (2016) concluded that small Martian ripples and large Martian ripples must form from different
mechanisms. Lapotre et al. (2016) argued that large Martian ripples are wind-drag ripples in recognition of
the apparent role played by atmospheric kinematic viscosity in controlling their wavelength. Building on
morphometric characteristics of large Martian ripples and their propensity to migrate both transversely
and longitudinally, Silvestro et al. (2016) and Vaz et al. (2017) further concluded that the dynamics of large
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ripples conflict with those of terrestrial impact ripples, such that large Martian ripples may bemore analogous
to eolian dunes than impact ripples. Longitudinal bedforms on Earth form underwater and subaerially owing
to locally reversing flows (Figure S2). Longitudinal eolian ripples on Earth are rare but do occur in the lee of
obstacles (Figures S2b and S2c) in response to high-frequency vortex shedding and turbulence, and their
crestline orientation reflects time-averaged lee-side wind conditions. Importantly, whether transverse or
longitudinal, those bedforms that form in bidirectional flows tend to have symmetric profiles (e.g.,
Figures 2b and 2f; Rubin, 2012; Rubin & Ikeda, 1990), similar to those of longitudinal large Martian ripples
(Figure 1e). Thus, the symmetric profiles of longitudinal large Martian ripples are consistent with a formation
under changing wind directions. However, whereas, for example, wave ripples form from reversing flows
within timescales of seconds tominutes, large-Martian-ripple formationmay integrate winds with divergence
angles between 90° and 180° over diurnal-to-seasonal changes in wind direction (Ewing et al., 2017). We pro-
pose that these longer timescales and the larger volumes of sediments involved in reorienting a whole bed-
form (e.g., Rubin & Ikeda, 1990) allow for the formation of longitudinal large Martian ripples through the same
wind-drag mechanism proposed for the formation of transverse large Martian ripples.

Further elaborating on the work of Lapotre, Lamb, et al. (2017), Durán et al. (2017) proposed that both current
and large Martian ripples form at low λ* (analogous to the wind-drag hypothesis of Lapotre et al. (2016), and
consistent with Lapotre, Lamb, et al. (2017)) under hydrodynamically smooth conditions, whereas impact rip-

ples form under hydrodynamically rough conditions. They expanded the Yalin number (χ∝ Lsatu�
ν ) formulation

of Lapotre, Lamb, et al. (2017) by using different formulations for the saturation length for transports in bed-
load and saltation, respectively. Hamidouche et al. (2018) further showed that a transition in the behavior of
the recirculation zone and reattachment point past a drag-ripple crest occurs at λ* ≈ 5000 (i.e., χ ≈ 8), consis-
tent with the stability of drag ripples as predicted by Lapotre, Lamb, et al. (2017). Thus, under the wind-drag
model, (i) large Martian ripples and impact ripples are not genetically related, (ii) large Martian ripples and
current ripples belong to a then yet undescribed bedform family that may form under water and winds,
and (iii) drag-ripple size varies with kinematic viscosity (equation (2)). Importantly, conditions that lead to
drag-ripple formation are promoted under thick viscous sublayers, that is, for high-kinematic-viscosity flows
and/or low flow velocities. A key observation that strongly supports this argument and would need to be
explained by any other model is the presence of clearly defined wavelengths associated with impact ripples
and large ripples. Intermediate-scale, compound ripples in the ~20- to 80-cmwavelength range were notably
absent in monodisperse sands throughout the Bagnold Dunes campaign. The only bedforms of intermediate
scale that were found clearly displayed coarse crests (Figures 1d and 1h; Weitz et al., 2018), have wavelengths
consistent with the predicted minimum size of coarse-grained ripples on Mars (Lämmel et al., 2018), and are
thus interpreted as coarse-grained ripples.

4.2. Near-Bed-Transport Bedforms Across Fluids on Earth and Mars

As described in sections 2 and 3, large Martian ripples, current ripples, coarse-grained ripples, and terrestrial
wind-drag ripples all display sinuous crestlines when they are transverse to a unidirectional flow. All of these
bedforms have asymmetric profiles with steep lee slopes, some of which are dominated by slip face pro-
cesses (grain-flow and/or grainfall). Where forming in bidirectional flows (i.e., excluding current ripples), they
are recognized to form longitudinally or obliquely and have more symmetrical profiles. Furthermore, equa-
tion (1) readily predicts the size of current ripples (Lapotre, Lamb, et al., 2017), large Martian ripples across
a broad range of atmospheric densities (Lapotre et al., 2016), and predicts that terrestrial wind-drag ripples
should form at ~10- to 20-cm wavelengths, consistent with Bagnold’s experiment and rarely recognized ter-
restrial sinuous ripples in fine sand (Figures 2d and 2e). On Earth, equation (1) coincidentally predicts wind-
drag ripples to be similar in size to large impact ripples, which is also coincidentally similar in size to the smal-
lest terrestrial coarse-grained ripples (Figure 2c; Lämmel et al., 2018).

In addition to morphometric and dynamic similarities (section 3), drag and coarse-grained ripples are unified
through their formation in lower-intensity sediment-transport conditions near the threshold of motion,
where grains predominantly move near the sediment bed. Specifically, large Martian ripples form under
low saltation fluxes at wind speeds near the impact threshold (e.g., Baker, Lapotre, et al., 2018; Sullivan &
Kok, 2017); current ripples form under low bed stresses (Richards, 1980), while linear and symmetric wave rip-
ples tend to form in medium-to-coarse sand at lower wave orbital velocities (Lamb, Fischer, et al., 2012;
Pedocchi & García, 2009b, 2009a); coarse-grained ripples form through reptation of coarse grains at wind
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speeds below their impact threshold (Yizhaq et al., 2009); and our candidate terrestrial wind-drag ripples
(Figures 2d and 2e; section 3.3) likely formed under low saltation fluxes. For example, ripples in Figure 2d
formed in damp beach sand, where pore water induces cohesion, raising the fluid threshold, and leading
to low saltation fluxes. Ripples in Figure 2e formed in angular (raising the fluid threshold) gypsum sand by
secondary deflected flows on the lee slope of a dune (where low transport would be expected). Thus, we pro-
pose that drag (current and wind) and coarse-grained ripples belong to a broader family of bedforms.
Although their modes of sediment transport may differ, these bedforms share similar morphologies, analog
dynamics, and sizes that may be predicted by equation (1). Their formation appears to be unified by near-bed
transport of a significant fraction of the sediments. On those grounds, we propose that:

1. LargeMartian ripples are wind-drag ripples. Their stability is permitted onMars by the high kinematic visc-
osity of the low-density Martian atmosphere and near-impact threshold formative wind speeds.

2. Terrestrial sinuous eolian ripples formed in monodisperse sands may also be wind-drag ripples. They are
rarely recognized on Earth, and although their abundance remains to be determined, they may be rare
due to the restrictive low-Yalin-number condition for their formation.

3. Drag (current and wind on Earth and Mars) and coarse-grained ripples are unified by their formation
under near-bed sediment-transport conditions at near-threshold wind speeds.

5. Conclusions

The Curiosity rover documented a variety of eolian bedforms: small impact ripples, large ripples in fine sand,
coarse-grained ripples, and dunes. Large ripples, in particular, display diverse morphologies and apparent
dynamics: they may be sinuous or straight-crested, fine or coarse-crested, isolated in patches or on dunes,
transverse or longitudinal to the net wind direction, active or inactive, and dust free or dusty. On the basis
of similar morphologies, analog dynamics, and sizes that are controlled by fluid-drag theory, we propose
that large Martian ripples belong to a broader family of bedforms that form under near-bed sediment
transport, including drag (water or wind) and coarse-grained ripples. Importantly, because the stability
and size of drag ripples are strongly controlled by environmental fluids, the recognition of drag ripples
or their cross-stratification enables a quantitative characterization of the environmental conditions under
which they formed. Drag-ripple cross-stratification formed by water on Earth and Mars (Lamb, Grotzinger,
et al., 2012) and by winds on Mars (Banham et al., 2018; Lapotre et al., 2016) has been previously recog-
nized. Drag ripples may also prove useful quantitative environmental indicators on Venus (e.g., Venusian
microdunes; Durán et al., 2017; Lorenz & Zimbelman, 2014), Titan (Lapotre, Lamb, et al., 2017), possibly
other planetary bodies (e.g., 67P-Churyumov Gerasimenko comet; Jia et al., 2017), but also to interpret
the ancient sedimentary record of Earth.
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