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ABSTRACT: Recent advances in fluvial seismology have provided solid observational and theoretical evidence that near-river
seismic ground motion may be used to monitor and quantify coarse sediment transport. However, inversions of sediment transport
rates from seismic observations have not been fully tested against independent measurements, and thus have unknown but poten-
tially large uncertainties. In the present study, we provide the first robust test of existing theory by conducting dedicated sediment
transport experiments in a flume laboratory under fully turbulent and rough flow conditions. We monitor grain-scale physics with
the use of ‘smart rocks’ that consist of accelerometers embedded into manufactured rocks, and we quantitatively link bedload
mechanics and seismic observations under various prescribed flow and sediment transport conditions. From our grain-scale obser-
vations, we find that bedload grain hop times are widely distributed, with impacts being on average much more frequent than
predicted by existing saltation models. Impact velocities are observed to be a linear function of average downstream cobble veloc-
ities, and both velocities show a bed-slope dependency that is not represented in existing saltation models. Incorporating these
effects in an improved bedload-induced seismic noise model allows sediment flux to be inverted from seismic noise within a fac-
tor of two uncertainty. This result holds over nearly two orders of magnitude of prescribed sediment fluxes with different sediment
sizes and channel-bed slopes, and particle–particle collisions observed at the highest investigated rates are found to have negligi-
ble effect on the generated seismic power. These results support the applicability of the seismic-inversion framework to mountain
rivers, although further experiments remain to be conducted at sediment transport near transport capacity. © 2018 John Wiley &
Sons, Ltd.

KEYWORDS: river, bedload, seismology, laboratory, experiments, mechanics

Introduction

Recent studies have demonstrated that high-frequency (1–50
Hz) river-induced ground vibrations can be used to mon-
itor key physical processes in rivers such as bedload
sediment transport (Govi et al., 1993; Burtin et al., 2008;
Tsai et al., 2012; Cook et al., 2018) and turbulent fluid flow
(Schmandt et al., 2013; Gimbert et al., 2014). Of central
interest is the sensitivity of near-river seismic observations
to bedload transport, in particular bedload transport rates
that control river morphology and erosion rates but remain
challenging to measure directly (Garcia et al., 2000; Ricken-
mann et al., 2012; Lamb et al., 2015; Whipple et al., 2000;
Cook et al., 2013). Seismic waves generated by single-grain
impacts are often not distinguishable in seismic records,
but the integrated contribution of impacts from all trans-
ported grains generates sufficient ground motion energy to
be detectable (Burtin et al., 2008; Burtin et al., 2011; Hsu
et al., 2011; Schmandt et al., 2013; Roth et al., 2014;
Díaz et al., 2014; Gimbert et al., 2016). Although turbulent

fluid flow also generates seismic noise (Schmandt et al., 2013;
Gimbert et al., 2014; Gimbert et al., 2016; Roth et al., 2017),
previous theory and its application at a natural scale suggest
that the bedload and turbulent flow sources may be distin-
guished by analyzing ground motion at various frequencies
and river-to-station distances (Gimbert et al., 2014; Cook et al.,
2018). Seismic instrumentation offers the advantage of being
relatively straightforward and low cost, potentially allowing
more and larger rivers to be safely instrumented with minimal
environmental perturbation.

To establish seismology as a robust observational means
of quantifying bedload fluxes, a reliable mechanistic frame-
work linking bedload mechanics to seismic ground motion is
needed. Tsai et al. (2012) theoretically related grain impacts
on the river bed to bedload-induced seismic signal character-
istics. However, inversions of sediment flux using this frame-
work (Tsai et al., 2012; Chao et al., 2015; Schmandt et al.,
2017) have not been tested and validated against indepen-
dent transport measurements and may have large uncertainties
due to the idealized bedload physics. In particular, Tsai et al.
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(2012) described the kinematics of bedload transport as saltat-
ing grains interacting only with the river bed (and not with
other transported grains) through vertical, elastic impacts that,
for a given grain size and hydrological condition, occur at
constant rate and strength. In reality, grains interact with each
other and impact the bed intermittently with periods of salta-
tion, rest, rolling or sliding (e.g., Lajeunesse et al., 2010),
which could bias predictions and inversions.

The primary goal of this study is to test the Tsai et al. (2012)
model using flume experiments. Based on our detailed obser-
vations of grain-scale impacts, we also propose new physical
descriptions that better capture bedload physics and evaluate
accuracy of bedload flux inversions from seismic noise.

In the next section we first provide a brief background and
new theoretical developments for modeling bedload-induced
seismic noise. The experimental setup and methods are pre-
sented in the third section. In the fourth section we show
experimental results, seismic power model predictions and
bedload flux inversions. Finally, interpretations and implica-
tions for field applications are discussed in the fifth section.

Rationale

Theoretical model of Tsai et al. (2012)

Seismic ground motion power is commonly evaluated at loca-
tion x and frequency f from the power spectral density (PSD)
P.f , x/ of ground velocity time series U.t, x/ defined as

P.f , x/ D
U.f , x/2

T
(1)

where U.f / D
R T

0 U.t/e�2� iftdt is the Fourier transform of U.t/
over a time window of duration T. Note that here we use the
notation U for ground velocity whereas Tsai et al. (2012) used
Pu for it. From a given force time series F.t, D, x0/ applied by a
grain of diameter D impacting the ground at location x0 in the
channel, one can write (Aki and Richards, 2002)

U.f , D, x/ D F.f , D, x0/G.f , x; x0/ (2)

where G.t/ is the velocity Green’s function, F.f , D, x0/ and
G.f , x; x0/ are the Fourier transforms of F.t/ and G.t/, respec-
tively.

Tsai et al. (2012) described F.t/ and G.t/ under multiple
simplifying assumptions. First, Tsai et al. (2012) assumed that
transported grains only impact the bed and not each other
(see Figure 1a), and that impacts occur randomly in time; i.e.
they are uncorrelated with each other. In this case, the source
force power increases linearly with the number of grains. Sec-
ond, Tsai et al. (2012) assumed that grains impact the river
bed vertically (i.e. along direction 2; Figure 1b). In this case,
G.t/ for surface waves reduces to GR.t/ for Rayleigh waves,
and hop times and impact velocities used to determine the
vertical force time series F2.t/ can be obtained from grain hop
height and settling velocity, which are parameters commonly
inferred from and calibrated using flume experiments (Sklar
and Dietrich, 2004; Lamb et al., 2008b; Chatanantavet et al.,
2013). Third, Tsai et al. (2012) assumed that grains of simi-
lar grain size exhibit an idealized saltation trajectory (e.g. no
rolling or sliding) defined by single, constant values for hop
time and impact velocity. These values were inferred from pre-
vious studies in which data averaging was conducted over
multiple measurements (Sklar and Dietrich, 2004; Lamb et al.,
2008a). Thus the force time series defined in Tsai et al. (2012)
is also an average quantity, which we denote by NF2.t/, where

Figure 1. Sketch of (a) a typical bedload transport saltation trajectory
and (b) the different velocities and angles involved in a moving grain
impacting a rough river bed. Uavg is the depth-averaged stream-wise
flow velocity (excluding subsurface flow). vinc is the incident impact
velocity vector (with horizontal component uinc and vertical compo-
nent winc), respectively, and oriented at an angle ‚inc with respect to
horizontal. vI is the impact velocity vector oriented normal to local
bed roughness, and oriented at an angle ‚I with respect to vertical.
vout is the reflected velocity vector, and corresponds to the vectorial
sum of vinc with �vI (using � D 1.13). ‚mod is the modified impact
angle. [Colour figure can be viewed at wileyonlinelibrary.com]

the overbar indicates the average. Under these three simpli-
fying assumptions, they were able to predict the total PSD
PTsai.f , x/ of vertical ground motion defined in Equation (1) by
integrating seismic power due to U.f , D, x/ (Equation (2)) over
the full size distribution of bedload transported grains pD.D/
and along the full length of river R as

PTsai.f , x/ D
Z

R

NF2
2 .f , x0/G2

R,2.f , x; x0/dx0

with NF2
2 .f , x0/ D

Z
D

nD

tI

NF2
I,2.f , D, x0/dD

(3)

where GR,2.f , x; x0/ is the vertical-to-vertical velocity Green’s
function for Rayleigh waves, NFI,2.f , D, x0/ is the single, aver-
age vertical impact force spectrum for a grain of diameter
D, and nD.D/ D pD.D/N=L is the number of moving grains
per unit grain size and per unit river length (with units m�2),
with N being the total number of sediment grains moving
over length L and tI.D/ the average hop time between impacts
of grains of diameter D. NFI,2.f , D/ was calculated from the
incident, average vertical velocity Nwinc by assuming that the
impact contact time tc (�1 ms) is significantly shorter than
1/fmax where fmax � 50 Hz is the maximum investigated seis-
mic frequency. (Here we use the notation Nwinc for the incident,
average vertical velocity whereas Tsai et al., 2012, used wi for
it.) In this case, NFI,2.f , D/ has a flat amplitude spectrum set by
momentum change as

NFI,2.f , D/ D I D m
Z tc

0
a.t/dt D m. Nwinc C Nwref/ D �m Nwinc (4)

where I is the vertical impulse imparted by the impact, m
is the mass of the impacting grain, a.t/ is the acceleration
time series during an impact and Nwref is the reflected, aver-
age vertical impact velocity. � D 1 C e is a constant equal
to 1 if the impact is perfectly inelastic (wref D 0) and 2 if

© 2018 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms, (2018)

http://onlinelibrary.wiley.com/


EXPERIMENTAL TESTING OF SEISMIC NOISE GENERATED BY SEDIMENT TRANSPORT

the impact is perfectly elastic (wref D winc). Tsai et al. (2012)
assumed � D 2 for simplicity. e is the restitution coefficient
(Gondret et al., 2002). Final model predictions using sedi-
ment flux qb as the main control parameter were made by
expressing the number nD of moving grains of diameter D in
Equation (3) as nD D qbDW=.VuS/, where uS is the average
stream-wise bedload velocity, W is the river width, V is the
grain volume and qbD D pD.D/qb is sediment flux per unit
grain size and per unit length.

Extension of the theory to a probabilistic
framework with impacts on a rough river bed

We extend the theory of Tsai et al. (2012) to a probabilis-
tic framework (including rolling or sliding, for example) that
incorporates the full distributions of impact hop times tI and
velocities winc as opposed to simply average values NtI and
Nwinc as in Tsai et al. (2012). We describe seismic power P in
the vertical component of ground motion from a probabilistic
framework by defining the probability density function pI.tI/
of hop times between impacts and replacing Equation (3) from
Tsai et al. (2012) by

P.f , x/D
Z

R

Z
D

Z
tI

PD,tI .f , D, tI ,x; x0/dtI dD dx0

where PD,tI .f , D, tI , x; x0/ DpI.tI/
nD

tI
F2

I,2.f , D, tI ,x0/G2
R,2.f ,x; x0/

(5)
where FI,2.f , D, tI , x0/ D �mwinc is the single vertical impact
force spectrum for a grain of diameter D and a given impact
hop time tI. Deviations of predictions using this probabilis-
tic scenario compared to the average one used in Tsai et al.
(2012) can be quantified through the impact efficiency param-
eter EI.D/ defined by comparing P in Equation (5) with PTsai in
Equation (3) as

EI.D/ D

R
tI

pI.tI/
nD
tI

F2
I,2.f , D, tI , x0/dtI

nD
tI
NF2

I,2.f , D, x0/
. (6)

Later we use the impact efficiency parameter EI.D/ to quan-
tify the control of bedload impact rate and velocity statistics
on seismic noise power.

We further rewrite the theory of Tsai et al. (2012) for
non-vertical impacts in a two-dimensional space. To do so,
we consider two-dimensional impact force time series FI,j.t/,
where index j D 1, 2 stands for the horizontal (1) and ver-
tical (2) directions (Figure 1b). Since Rayleigh waves are the
only surface waves that contribute to seismic power in the
vertical component of ground motion, we define the Green’s
function GR,j.t, x; x0/ as the vertical ground velocity at x
due to an instantaneous force applied along direction j at
x0. (One could also use the other horizontal components,
although Love waves and a dependency of seismic power
on source-to-station azimuth should be accounted for in that
case). With these definitions, we obtain

P.f , x/ D
Z

R

Z
D

Z
tI

2X
jD1

pI.tI/
nD

tI

� F2
I,j.f , D, tI , x0/G2

R,j.f , x; x0/dtI dD dx0

(7)

where FI,j.f , D, tI , x0/ D �mvI,j.tI/ and vI,j , for a rough bed,
is the jth component of the impact velocity vector oriented
normal to local bed roughness (no friction; see Figure 1b).
This definition for the impact velocity that generates seis-
mic ground motion thus differs from that previously used in

Tsai et al. (2012), which is strictly only appropriate for a
smooth bed. Below, though, we show that smart rock data
suggest that the assumption of vertical impacts is reason-
able. Assuming that impacts are approximately vertical in
natural settings, the vertical-to-vertical Green’s function GR,2

may be used and FI,2.f , D, ti , x0/ in Equation (7) becomes

FI,2.f , D, ti, x0/ D �mvI.D, tI, x0/, where vI D
q

v2
I,1 C v2

I,2 is

the norm of the impact velocity normal to the bed roughness
approximated as vI � vI,2. Given an empirical expression for
the impact efficiency parameter EI (Equation (6)), Equation (7)
simplifies to

P.f , x/ �
Z

R

Z
D

EI.D/PD.f , D, x; x0/dD dx0 (8)

with PD.f / calculated as

PD.f , D, x; x0/ D
nD

NtI
NF2

I,2.f , D, x0/G2
R,2.f , x; x0/ (9)

with NFI,2.f , D, x0/ D �m NvI.f , D, x0/. Predictions using this
improved modeling framework are ultimately compared with
those using the original model of Tsai et al. (2012) on the basis
of the experiments described below.

Experimental Strategy, Methods and
Measurements

Experimental strategy to test the models

To conduct our experiments we use a ground-detached steel
flume (Figure 2; see next subsection for details) that allows for
varying flow (slope, discharge) and bedload transport condi-
tions, but prevents us from evaluating seismic wave propaga-
tion (the Green’s function G.t/; see Equation (2)) under natural
conditions. We thus empirically measure the flume Green’s
function GF .t/ using known forces applied to the flume bed,
and focus our analysis on evaluating the bedload source force
F.t/ and its control on bedload-induced seismic flume vibra-
tions. The main components of the force F.t/ such as impact
characteristics (mainly impact time and restitution coefficient;
see Equation (4)) and bedload transport kinematics (mainly
grain hop times and impact velocities) are inferred from the
analysis of tracers referred to as ‘smart rocks’, which consist
of three-component accelerometers embedded in aluminium
housings with typical river grain geometries (Figure 2b; see
also Olinde and Johnson (2015), and ‘Smart rock calibration,
methods and experimental plan’ below). We then use these
grain-scale observations to constrain the modeling of F.t/ by
accounting for the full distributions of bedload hop times pI.tI/
and associated impact forces (see Equation (5)). Predictions of
seismic noise using our grain-scale calibrated model are com-
pared with seismic noise observed using a seismometer placed
on the flume armature (see ‘Seismic noise measurements’
below).

Flume setup and transport conditions

Experiments were conducted in a 15 m long, 1 m wide tilting
flume at the California Institute of Technology (Figure 2a). The
setup of the flume is identical to that described in Lamb et al.
(2017a, 2017b), and is briefly described here. The flume bed
is made out of natural river cobbles with a median grain diam-
eter of 4.5 cm glued to the steel floor in a layer of about one
grain diameter thick. The average bed elevation measured by
laser scan was 28 mm above the metal floor. Subsurface flow is

© 2018 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms, (2018)
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Figure 2. Experimental setup. (a) Picture of the flume with flowing water. (b) Picture of the smart rock resting on the flume cobble bed (left,
see steel gray rock) and of the accelerometer device placed inside the rock (right). (c) Measured (circles) and fit (solid lines) grain size probability
density function pD.D/ for the small (filled blue circles) and large (empty black circles) grains. The glued cobble flume bed is made out of small
grains. The red dashed line shows the smart rock b-axis length of DSR D 0.09 m. [Colour figure can be viewed at wileyonlinelibrary.com]

Table I. Expiremental flow conditions

Bed slope, Discharge, Flow depth, Flow velocity Froude Number of Transport stage
S (grade) Q (l s�1) H (m) Uavg (m s�1) number, Fr smart rocks for smart rocks

0.02 159 0.14 1.09 0.93 0 �0.074
0.02 301 0.20 1.50 1.08 1 0.323
0.02 499 0.27 1.84 1.14 0 0.786
0.05 200 0.11 1.72 1.64 8 0.246
0.05 400 0.18 2.18 1.64 11 0.984
0.05 600 0.24 2.46 1.60 5 1.65
0.08 153 0.09 1.51 1.55 5 0.109
0.08 289 0.13 2.09 1.82 6 0.601
0.08 392 0.16 2.39 1.91 4 0.971
0.08 517 0.19 2.66 1.95 8 1.46

significant at steep slopes due to the use of a highly permeable
cobble bed in our experiments (i.e. flow velocity is non-zero at
the average-bed elevation). By predicting the depth-averaged
stream-wise subsurface flow velocity Usub using the approach
of Lamb et al. (2017b) (see Equation 14 therein), we calculate
the depth-averaged stream-wise flow velocity (excluding sub-
surface flow) Uavg as Uavg D .Q �Qsub/=HW, where Q is total
flow discharge measured with an in-line magnetic flow meter,
H is flow depth and Qsub D �WUsub is the subsurface flow dis-
charge, W D 1 m being channel width and � D 28 mm being
the thickness of the subsurface layer. The surface flow has a
nearly logarithmic vertical velocity profile far above the bed,
while flow velocity decreases less than logarithmically as the
bed is approached (Lamb et al., 2017b). Reduced turbulence
intensity was observed near the bed for shallower flows, i.e.
flows with increasing relative roughness (Lamb et al., 2008b).
Flow conditions were fully turbulent (Reynolds numbers larger
than 103) and all flows but one (experiment at 0.02 grade
slope with the lowest discharge) were supercritical (i.e. with
Froude numbers larger than 1). Steady and uniform flow con-
ditions were attained by adjusting outlet gate heights to ensure
spatial flow accelerations less than 5% averaged across the

center 9 m of the flume (i.e. the test section) (Lamb et al.,
2017b). In such a case, bed shear stress can be approximated
with limited bias as �b D �u2

�, where � is water density and
u� D

p
gHS is bed shear velocity, S being bed slope (tan-

gent of the bed-slope angle). Bed roughness Reynolds number
Reks D u�ks=� � 105 (where � is water kinematic viscosity
and ks D 3D50 (Kamphuis, 1974)) is consistent with typical
mountain streams.

We investigated 10 flow configurations with varying chan-
nel slope S (0.02, 0.05 and 0.08 grades) and flow discharge
(153 l s�1 < Q < 600 l s�1, Table I). At each flow configura-
tion we conducted a series of bedload transport experiments
by manually dropping mixed natural and smart rock assem-
blies upstream of the flume test section. Smart rocks have
a spheroidal, but non-spherical, geometry similar to natural
grains (Figure 2b), with an intermediate b-axis diameter of
DSR D 0.09 m (Figure 2c). For natural grains we used two dif-
ferent mixtures of well-sorted, fluvial gravels: a set of small
grains equivalent to the flume bed grains with median grain
size DS

50 D 0.045 m, and a set of larger grains with DL
50 D 0.07

m. Sets of small and large grains had size distributions with
similar standard deviation � obtained from best fitting the

© 2018 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms, (2018)
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log-‘raised cosine’ distribution pS
D.D/ and pL

D.D/ defined in
Tsai et al. (2012) to each grain size distribution (Figure 2c). We
found � D 0.12 (dimensionless; see Tsai et al., 2012). Critical
Shields stress ��c,SR for initial motion of smart rocks, where ��

is defined as �� D �b=..�s � �/gD/, was inferred by measur-
ing the dry friction angle �0,SR from tilt-table experiments over
a rough bed of similar grain size to the flume bed sediment
(following Prancevic et al., 2014), and applying the model of
Lamb et al. (2008b) (see Appendix A). We found ��c,SR D 0.021
for S D 0.02, ��c,SR D 0.0315 for S D 0.05 and ��c,SR D 0.0451
for S D 0.08. We extrapolated these findings to the other nat-
ural grains (NG) using a hiding function for gravel mixtures,
��c,NG D �

�
c,SR.DNG=DSR/

�˛ with ˛ D 0.9 (Parker, 1990).
We performed the sediment transport experiments

by sequentially dropping a given number N .N D

1, 3, 10, 100, 370 and 750/ of natural cobbles mixed with a
few (one to five) smart rocks into the test section. To investi-
gate grain size dependency, we used sets of 370 small natural
cobbles (with no smart rocks), chosen such that the total sedi-
ment mass was similar to that of the 100 larger cobbles. This
procedure with instantaneously dropped grains allowed us
to avoid the use of the sediment recirculation system, which
generates seismic noise that overwhelms the bedload-induced
noise. However, a drawback is that sediment flux qb varies in
time as the sediment pulse travels downstream. qb gradually
increased as grains progressively were entrained from where
they were dropped, then reached a maximum and finally
decreased as grains were deposited at the end of the test
section. For all experiments with 1–370 cobbles there was a
1 s to several seconds time window during which all grains
moved simultaneously; i.e. grains at the tail of the sediment
pulse started to move before grains at the head reached the
end of the test section. Since this time window corresponded
to the time window of maximum seismic energy (see ‘Seismic
noise measurements’, below), sediment flux during this time
could be calculated a posteriori as qb D N

R
D

pD.D/V.D/uS
WL (see

Appendix B), V .D/ D 4	=3.D=2/3 being grain volume, L the
spatial sediment pulse length and uS the average sediment
downstream velocity calculated from the difference between
the first and the last impact recorded by smart rocks as they
cover the flume test section. In these estimates, uncertainties
on the prescribed sediment flux qb are mainly due to uncer-
tainties on the cobble-pulse length L, which, based on video
analysis and direct observations, varied between 2 and 8 m.
We use L D 4 m to calculate qb and note that there is a factor
of 2 uncertainty in qb due to this consideration. In experiments
with 750 cobbles, however, there was not a time window

during which all grains were transported because the head of
the sediment pulse reached the end of the test section before
the tail started to move. In that case we calculated maximum
sediment flux from video analysis (see Appendix B), which we
then were able to relate to maximum seismic power.

Smart rock calibration, methods and experimental
plan

Smart rock characteristics
A smart rock consists of an aluminium casing of typical
river grain geometry that incorporates a three-component
accelerometer measuring acceleration along three orthogonal
axes (Figure 2b). Smart rocks have a density of �s D 2.6 kg m�3

made similar to that of natural rocks by incorporating thin
lead plates into the aluminium of the smart rock. The embed-
ded accelerometer has a sufficiently high sampling rate (512
Hz) and maximum acceleration range (250g, where g D 9.81
m s�2 is acceleration due to gravity) to identify impacts and
measure acceleration changes undergone by the smart rock
under the typical (of the order of 1 m s�1) impact velocities
investigated in our experiments (Appendix C).

Impact mechanics of smart rocks
We inferred underwater impact mechanical properties from
evaluating the acceleration time series a.t/ recorded by smart
rocks during multiple drop experiments conducted on top of
the flume cobble bed and under still water (see Figure 3a).
We measured impact times of the order of 3–6 ms, such that
the acceleration time function expected during the impact
had a nearly flat spectrum below 100 Hz, and the instanta-
neous impact assumption originally proposed by Tsai et al.
(2012) was valid in our experiments (Appendix C). We mea-
sured the constant � (Equation (4)) from time integrating the
vertical acceleration time series, picking the incident (nega-
tive) velocity wdrop

inc and the reflected (positive) velocity wdrop
ref

and averaging among all experiments, and calculating � as
� D 1 C j Nwdrop

ref = Nw
drop
inc j. We found � D 1.13, which corre-

sponds to a coefficient of restitution e D 0.13, which is smaller
than previously found in dedicated experiments (of the order
of 0.6–0.9) for similar materials (steel and rocks) and regard-
less of whether impacts occurred in air or in more viscous
fluids like water (Jackson et al., 2010; Durda et al., 2011).
This discrepancy may be due to a geometrical effect relevant
to bedload impacts, in which grains hit each other with their

Figure 3. Examples of typical smart rock acceleration measurements acquired as a function of time for (a) calibration drops (4 cm height drops
for 40 side-looking smart rock impacts) with horizontal bed and (b) a bedload transport experiment at 0.05 grade slope and 400 l s�1 discharge.
Big red dots indicate acceleration maxima automatically picked for each impact. Small green dots indicate integrated acceleration values obtained
by summing three acceleration measurements around each impact. [Colour figure can be viewed at wileyonlinelibrary.com]

© 2018 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms, (2018)

http://onlinelibrary.wiley.com/


F. GIMBERT ET AL.

center of mass not being perfectly aligned, such that extra
impact energy loss occurs through grain rotation and deflec-
tion. It is also possible that this discrepancy is partly due to
the specifics of our experimental setup, in which the impacted
river bed grains are glued to a deformable epoxied fiberglass
sheet, making the mechanical response of the ensemble par-
ticularly inelastic and thus � particularly small. Thus, although
our inferred � is representative of our experiments, it might not
be applicable to other experimental and natural settings.

Particle transport kinematics from smart rocks
In contrast to more common techniques (e.g. high-speed pho-
tographic techniques) that only allow particles with large
motions to be measured over a restricted, pluridecimetric,
subset of their trajectories (Nino et al., 1994; Francis, 1973;
Nino and Garcia, 1998; Abbott and Francis, 1977; Hu and
Hui, 1996; Chatanantavet et al., 2013), the use of smart rocks
in this study allows us to quantify the full dynamics of bed-
load grain impacts along an entire grain trajectory, including
potential periods of rest, sliding, rolling or saltation. We calcu-
lated impact hop times tI as the time between impact-induced
acceleration spikes, and the average downstream velocities of
transported sediments uS from the time between the first and
last smart rock recorded impact and the corresponding 9 m
distance along the flume test section (see Figure 3b). Inferring
impact velocities during bedload experiments, however, can-
not be done by integrating the entire acceleration time series,
as done previously for drop experiments, because large and
unresolvable rotations occurred between impacts. Thus we
calculated vI (see Figure 1b) as vI D ıv=� , where ıv is the
velocity variation observed due to the impact (Appendix C)
and � D 1.13 is used based on the still-water calibration per-
formed previously (‘Impact mechanics of smart rocks’, above).
Doing this, we assume that impact energy loss under still water
was similar to that under flowing water, which is supported by
the fact that no change was observed in the average contact
time, nor in the average of ratios between maximum abso-
lute acceleration (see red dots in Figure 3a). We calculate

absolute acceleration from integrating over the three measure-
ment points from before and after the impact (see green dots
in Figure 3b). We note that the impact velocity vI measured
from smart rocks corresponds to that oriented normal to the
local bed topography, as opposed to winc used in Tsai et al.
(2012) that corresponds to the vertical component of the inci-
dent impact velocity (Figure 1b). We also note that the smart
rocks malfunctioned several times, which resulted in signif-
icant data gaps during certain experiments. The number of
smart rock records is thus not constant from one experiment
to another, and is particularly low for the 0.02 grade slope
experiments since only one smart rock recorded useable data
in those cases (see Table I). In the following sections, values
of impact hop times, downstream velocities and impact veloc-
ities averaged along each smart rock trajectory and over all
smart rock records of a given flow condition are denoted by NtI ,
uS and NvI. Smart rock downstream velocities uS are typically
averaged over �1 to 11 measurements. Given that one smart
rock traveling the flume test section undergoes between about
35 (for 0.08 grade slope and Q D 517 l s�1) and 110 (for
0.02 grade slope and Q D 327 l s�1) impacts, average impact
velocities NvI and hop times NtI are integrated over hundreds of
measurements.

Seismic noise measurements and Green’s function
calibration

Seismic noise measurements
Seismic flume motion was recorded by a seismometer placed
on the steel armature of the flume about halfway between the
upstream and downstream ends of the test section (Figure 2a),
which is connected to the steel floor of the flume. Verti-
cal seismic power was calculated using vertical component
seismograms and Welch’s averaging method (Welch, 1967)
applied on 1 s time windows with 50% overlap. Figure 4
shows examples of seismic power time series obtained during
experiments at 0.08 grade slope with 100 large cobbles and

Figure 4. Examples of seismic power records during 0.08 grade slope experiments with 100 cobbles of the large grain set and under various
flows depths (H) indicated. (a) Seismic power (see color scale) as a function of time and seismic frequency. (b) Seismic power averaged in the
25–50 Hz frequency range as a function of time (solid black line). Average values of background noise and bedload plus background noise are
shown as the blue and red dashed lines, respectively. Vertical dashed lines in (a) and (b) indicate the time at which cobbles were dropped into the
flume, and vertical solid lines correspond to the time at which seismic energy is maximal in the 25–50 Hz frequency range. [Colour figure can be
viewed at wileyonlinelibrary.com]
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various flow depths. Seismic noise due to grain impacts from
bedload transport is thus mostly observed at relatively high fre-
quencies and is best tracked in the 25–50 Hz frequency range,
where a clear seismic power increase is often observed when
bedload transport occurs (Figure 4b and Appendix D). Flume
resonance is accounted for in model predictions through
Green’s function calibrations (see below). Bedload-induced
noise is extracted from total noise by (i) picking the maximum
seismic power value observed in the 25–50 Hz frequency
band (see horizontal red dashed lines in Figure 4b), which cor-
responds to maximum sediment flux as quantified a posteriori
(see ‘Flume setup and flow/sediment transport conditions’,
above) and (ii) removing the background seismic noise con-
tribution obtained by averaging the 25–50 Hz seismic power
over identical conditions, but 1 min prior to the introduction
of the sediment cobbles (see horizontal blue dashed lines in
Figure 4b). This background noise is mainly due to noise from
pumps and/or water pipe resonances, such that the turbulent
flow induced-noise theory of Gimbert et al. (2014) cannot be
tested from these experiments. In addition, for several cases
the peak of seismic energy due to cobbles simultaneously
moving as bedload was not visible because it was over-
whelmed by noise from water pumps, which was particularly
high at larger discharges (see, for example, the maximum flow
depth experiment in Figure 4). We disregard these cases and
only consider cases for which a clear seismic power maximum
due to bedload could be distinguished by eye.

Green’s function calibration
To predict seismic power in our experiments using
Equations (1) and (2), we need to define the vertical-to-vertical
flume Green’s function GF,2.t/. We measured GF,2.t/ empir-
ically by recording flume seismic motion due to the impact
of a cobble of known mass m D 0.66 kg dropped from a
known height zdrop D 40 cm on the flume bed with glued
cobbles (Appendix D). We conducted this experiment on the
tilted flume, such that flume seismic response could be probed
in a geometrical situation similar to that of bedload experi-

Figure 5. Measured along-channel variations of seismic velocity
power (in the 25–50 Hz bedload frequency range) due to cobble
impacts of uniform amplitude prescribed at various places along the
flume test section. The black square corresponds to the reference
impact point used to define the reference Green’s function, and the
blue dots correspond to other impact points. A 4 m long running mean
(solid red line) of the linearly interpolated measurements (blue dashed
line) is shown for uncertainty estimates in model predictions. [Colour
figure can be viewed at wileyonlinelibrary.com]

ments, and directly in air to avoid flowing water conditions.
Using a reference measurement conducted at a given location
(see black dot in Figure 5), we found an average amplitude of
NGF,2.25 < f < 50/ D 7.66 � 10�8 m s�1/N in the 25–50 Hz
seismic frequency range of interest for bedload (‘Seismic noise
measurements’, above). By applying such a measured Green’s
function to the bedload sediment transport experiments, we
assume that flume seismic response is similar whether the
flume is wet or dry. This assumption is supported by the
fact that the flume’s total mass is only marginally affected by
the presence or absence of water, which represents at most
one-fifth of the total flume mass, and that the water layer is too
thin (at most 30 cm deep flows) for acoustic wave resonance
in the water column to significantly enhance seismic power in
the frequency range of interest.

We tested the spatial variation of the 25–50 Hz Green’s
function by evaluating the variations (amplification or damp-
ing) of observed seismic flume velocity power for similar
impacts at various places along the flume test section (see blue
dots in Figure 5). Seismic power was observed to vary by up to
10 dB in places, such that the spatial dependence of the bed-
load pulse during transport has to be accounted for in model
predictions. We do so by approximating the sediment seismic
source as being uniformly distributed (i.e. uniform bedload
flux, impact velocities and rates) over a 4 m long bedload
pulse traveling over the entire flume test section. We estimate
the seismic response for such a 4 m long uniform seismic
source by calculating the 4 m long running mean (see red line
in Figure 5) of the seismic power spatial variations after linear
interpolation between the individual measurements (see blue
dashed line). We find that signal enhancement or damping
along the flume test section for such a 4 m long uniform seis-
mic source may cause bedload-induced seismic power to vary
by ˙2 dB around that predicted using the reference Green’s
function power NGF,2 as defined previously from our reference
point. This ˙2 dB uncertainty in flume response is shown as
error bars in the following model predictions. Although the
bedload pulse may actually vary from 2 m to 9 m (i.e. the
test section length) among experiments, these variations are
expected to have negligible effect on our estimated uncertainty
(see Figure 5).

Application of the modeling framework to the
experiments

Using an average vertical-to-vertical flume Green’s function
NGF,2.f / as defined above, the predicted flume seismic power
from the integral of all bedload sources (Equation (7)) simpli-
fies to

P.f / D L
Z

D

Z
tI

pI.tI/
nD

tI
F2

I .f , D, tI/ NG2
F,2 dtI dD (10)

For bedload experiments only made out of single-sized
smart rocks, the size distribution of transported grains reduces
to a delta function and the previous equation further simpli-
fies to (using Equation (4) to rewrite the source term FI.f , D, tI/
with vI instead of winc, and Equations (3) and (6) to substitute
the function EI)

PSR.f / D
NSR

NtI
EI.�stage, SR/ .��sVSR NvI/

2 NG2
F,2 (11)

where VSR is the volume of each smart rock, vI is the impact
velocity oriented normal to the bed roughness (Figure 1b) as
measured from the smart rocks (‘Particle transport kinemat-
ics from smart rocks’, above), and EI is the impact efficiency
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parameter that accounts for the role of impact velocity and
rate distributions on seismic power, which we calculate as a
function of transport stage �stage, SR D �

�=��c,SR�1 (Equation (5))
as

EI.�stage, SR/ D

R
tI

pI.tI/
vI.tI/2

tI.�stage, SR/
dti

Nv2
I

tI.�stage, SR/

. (12)

We extend seismic power predictions to experiments with
natural grains (NG) by defining their number per unit grain
size as nD.D/ D

pD.D/NNG
L (see Appendix B), where NNG is the

number of natural grains. Then we assume that the function
EI.�stage, NG/ remains valid for all natural grains of various sizes
and use Equation (10) to obtain

PNG.f , x/ D NNG

Z
D

pD.D/
NtI.�stage, NG/

EI.�stage, NG/

� .��sVNG NvI.D//
2 NG2

F,2 dD.
(13)

Predictions of total seismic power for mixed smart rock and
natural settings can thus be determined as

P.f , x/ D PSR.f , x/C PNG.f , x/ (14)

and the respective numbers of transported grains can be
inverted as

Ninv
SR D 
P

obs.x/
NtI.�stage, SR/

EI.�stage, SR/ .��sVSR NvI.DSR//
2 NG2

F,2

Ninv
NG D .1 � 
/P

obs.x/
1R

D
EI.�stage, NG/

NtI.�stage, NG/
pD.D/ .�m NvI.D//

2 NG2
F,2 dD

(15)
where 
 D NSR=.NNGCNSR/ is the fraction of smart rock versus
natural grain numbers and Pobs corresponds to observed seis-
mic power. Inverted grain numbers can finally be converted
into an inverted sediment flux qinv

b as

qinv
b Dqinv

b,SRCqinv
b,NG D Ninv

SR
uSVSR

WL
CNinv

NG

Z
D

pD.D/VNG.D/uS

WL
dD.

(16)

Results

Particle transport kinematics

Particle kinematics for individual particles
We analyze particle transport kinematics for isolated moving
particles by considering smart rock records for experiments
with 1, 3 and 10 cobbles only. Figure 6 shows the measured
average downstream bedload velocity uS and incident impact
velocity NvI for all flow configurations (see also Table I) as a
function of transport stage �stage D ��=��c � 1 (Figures 6a, 6b),
and as a function of depth-averaged downstream flow velocity
Uavg (Figures 6c, 6d), where the average excludes subsurface
flow. uS and NvI versus �stage in log-log space are linearly best
fit by the power laws uS D 1.19

p
RggD�0.30

stage (R2 D 0.64) and
NvI D 0.51

p
RggD�0.25

stage (R2 D 0.53) with g the acceleration due
to gravity and Rg D .�s � �/=� the excess grain density, �s

being grain density. Empirical relations from Sklar and Dietrich
(2004) (see discontinuous green lines in Figure 6a) roughly
capture the general trend of uS versus �stage, where uS is either
calculated as uS D 1.56

p
RggD.��=��c � 1/0.56 (see dashed

line) or as uS D 0.83
p

RggD.��=��c /
0.83 (see dotted line).

Although NvI as measured here corresponds to the impact
velocity normal to the bed roughness and thus differs from the
vertical component of impact incident velocity Nwinc as defined
in Tsai et al. (2012) (Figure 1), NvI can be well approximated by

Nwinc (Figure 6b) as predicted by Tsai et al. (2012), who used
Lamb et al. (2008a) to calculate

Nwinc.Hb/ D wst cos �
q

1 � expŒ� OHb� (17)

where Hb is the bedload layer height calibrated as

Hb D 1.44D
�
��

��c

�0.50

for Hb � H and Hb D H otherwise

(18)
from previous laboratory measurements (e.g., Nino et al.,
1994; Francis, 1973; Nino and Garcia, 1998; Abbott and
Francis, 1977; Hu and Hui, 1996), wst is the termi-
nal settling velocity, defined as wst D

p
4RggD=.3Cd /,

OHb is the non-dimensional hop height defined as OHb D

3Cd�Hb=.2�sD cos �/, � D arctan.S/ is the bed slope angle
and Cd is a drag coefficient that depends on particle Reynolds
number and grain shape. Here we calculate Cd as in Tsai et al.
(2012), using the empirical formula of Dietrich (1982) for a
Corey shape factor of 0.8 and a Power roundness scale of 3.5
for natural gravel.

As expressed versus �stage, however, both uS and NvI exhibit
significant scatter. This scatter is mainly caused by an
extra dependency of uS and NvI on bed slope S. Express-
ing velocities as a function of slope after correcting for their
�stage-dependency, i.e. expressing uS=1.19

p
RggD�0.30

stage and
NvI=0.51

p
RggD�0.25

stage as a function of S, we find (Figures 6e, 6f)

uS D .9.0S C 0.47/ � 1.19
q

RggD�0.30
stage (19)

and
NvI D .10.4S C 0.4/ � 0.51

q
RggD�0.25

stage (20)

Scatter is reduced, R2 values are improved and slope depen-
dency is no longer significant when uS and NvI are compared
to average flow velocity Uavg instead of to transport stage
�stage (Figure 6b). Reduced scatter was previously shown by
Chatanantavet et al. (2013) for uS, but was not reported for NvI.
Chatanantavet et al. (2013) originally proposed the empirical
relationship uS D 0.6Uavg based on best-fit data from a large
catalogue including data originally compiled by Sklar and
Dietrich (2004) and data representing hydraulically smooth
beds. Best fits of our experiments with rough bed conditions
gives uS D 0.91Uavg�0.50

p
RggD (R2 D 0.92), which leads to

similar values to uS D 0.6Uavg in the range of Shields stresses
investigated here, but is consistent with there being a thresh-
old for motion. This threshold behavior for motion is consistent
with our non-zero grain-to-bed friction boundary condition
due to the rough bed, and the y-intercept likely depends on
the critical Shields number for initial motion. To explain both
our data and those analyzed in Chatanantavet et al. (2013), we
propose that uS may be described as

uS D 0.6Uavg exp.�.Uavg,c=Uavg/
X/

for Uavg � Uavg,c and uS D 0 otherwise
(21)

where Uavg,c is the depth-averaged velocity of the surface flow
at the threshold for grain motion and X is a constant. An exam-
ple of such scaling is shown in Figure 6c using Uavg,c D 1.4
m s�1 and X D 20, although Uavg,c likely depends on particle
weight.

We also find that the measured average incident
impact velocities NvI are linearly related to the measured
depth-averaged surface flow velocities (Figure 6d), and thus
to the average downstream bedload velocities uS (Figure 7a).
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Figure 6. Average downstream cobble velocity uS (green, left) and vertical and normal to bed roughness average velocities (right), Nwinc (black)
and NvI (blue), respectively, for the various flow configurations (see Table I) and as a function of (a, b) transport stage �stage D ��=��c � 1,
(c, d) depth-averaged flow velocity Uavg and (e, f) bed slope S once corrected from their �stage-dependency as uS=1.19

p
RggD�0.30

stage and
NvI=0.51

p
RggD�0.25

stage. Using data from experiments with less than or equal to 10 cobbles. Symbols correspond to measurements, solid lines to best
fits of our data and discontinuous lines to predictions from previously proposed empirical fits: using Sklar and Dietrich (2004) for uS versus �stage

(dashed line in a) and versus ��=��c (dotted line in a), Tsai et al. (2012) for Nwinc versus �stage (dashed line in b, see Equation (17)) and Chatanantavet
et al. (2013) for us D 0.6Uavg (dashed line in c). Measurement error bars correspond to the standard deviation of the respective quantities calcu-
lated across smart rock records. The thin red line in (c) corresponds to a scaling of the type uS D 0.6U exp.�.Uavg,c=Uavg/

X/ for Uavg � Uavg,c and
uS D 0 otherwise, using Uavg,c D 1.4 m s�1 and X D 20. Note that axes are logarithmic in (a, b) and linear in (c)–(f). [Colour figure can be viewed
at wileyonlinelibrary.com]

All measurements follow a linear scaling of NvI D 0.43uS

(R2 D 0.94) regardless of flow conditions.
The average time tI between each impact as observed as

a function of �stage in our experiments (see Figure 7b) scales
similarly to that predicted in Tsai et al. (2012) using Sklar and
Dietrich (2004) as

tI D Hb=.C1ws/ (22)
with Hb calculated from Equation (18), C1 � 2=3, which is a
coefficient that accounts for the particle ejection or rise time
being about 1.5 times larger than the fall time, and ws the
bedload average settling velocity defined as (Tsai et al., 2012)

ws D
HbR Hb

0 wI.z/�1 dz
D

OHbwst cos �

2 log
h
e OHb=2 C

p
e OHb � 1

i . (23)

However, while scaling is similar, the amplitude is about 2.5
times smaller (see Figure 7); i.e. impact rates 1=t I are about
2.5 times larger than those predicted by Sklar and Dietrich
(2004). Predictions of tI from Sklar and Dietrich (2004) can be
approximated with tI D 0.35.��=��c � 1/0.28, while best fit of
our data gives tI D 0.14.��=��c �1/0.28 (R2 D 0.83/. Also, for a
given value of �stage, there exists an extra dependency of impact
times on slope, with impact times being shorter, i.e. impact
rate being larger, with decreasing slope. This can explain why
uS and NvI exhibit an extra dependency (increase) with slope at
constant �stage (Figures 6e, 6f), since more impacts at smaller
slopes would reduce the average downstream velocity uS and
impact velocities NvI.

Finally, we estimate the average impact velocity vector
angle ‚I relative to vertical (Figure 1b) from our independent
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Figure 7. Impact properties and their links with fluvial parameters. Using data from experiments with less than or equal to 10 cobbles. (a)
Observed average impact velocity NvI as a function of observed average downstream cobble velocity uS. The dashed line shows best data fit (NvI D

0.43uS), and the solid lines show NvI D
2
5 uS and NvI D

1
2 uS. (b) Average time NtI between impacts as a function of transport stage �stage D �

�=��c � 1.
Error bars correspond to the standard deviation of average hop time calculated across smart rock records. The solid line shows predictions using
NtI D Hb=.C1ws/, where Hb and ws are calculated from empirical relationships by Sklar and Dietrich (2004; see Equations 18 and (23)). The dashed
line shows Nti D 0.14�0.28

stage that corresponds to the best fit to the data. (c) Impact angle ‚I relative to vertical (see Figure 1b) as a function of �stage.
‚I is calculated from our direct measurements of NvI and from estimates of vinc (using plausible bounds for Nuinc as a function of uS and using
Equation (17) to calculate Nwinc; see main text).

Figure 8. (a) Probability density distributions pI.tI/ (per unit time) of hop times and associated (b) impact velocities vI as a function of hop time
for (top) 0.05 grade slope and (bottom) 0.08 grade slope configurations. Vertical dashed lines show hop times predicted by Sklar and Dietrich
(2004, using Equation (22)), while vertical solid lines show average values calculated from the distribution as NtI D

R
tI pI.tI/tIdtI . Using data from

experiments with less than or equal to 10 cobbles. [Colour figure can be viewed at wileyonlinelibrary.com]

measurements of NvI, uS and NtI . We use ‚I D 	=2 � .‚inc C

‚mod/, where ‚inc D arctan.uinc=winc/ is the impact incident
angle with respect to horizontal, ‚mod D arccos.vI=vinc/ is the

modified impact angle, and vinc D
q

u2
inc Cw2

inc is the norm of
the incident velocity vector. We calculate the average impact
angle ‚I by first observing that the average downstream com-

ponent Nuinc of the impact velocity is directly proportional to
uS, and second calculating the vertical impact velocity Nwinc

using Equation (17) by substituting our observation that aver-
age hop time and thus hop height is 2.5 times smaller than
that predicted using Equation (18). Marker values in Figure 7c
are obtained using Nuinc D uS, while error bars are obtained
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by using Nuinc D 2uS (upper bound) and Nuinc D 0.5uS (lower
bound). We find that the average impact angle ‚I is small,
about 5–20° from vertical, such that the force of impact is ori-
ented nearly vertically (see Figure 1b). Since ‚I D �� for a
perfectly smooth bed, we conclude that the rough bed condi-
tions only moderately affect the impact velocity vector angle.
We finally note that ‚I decreases (so that impacts are closer to
perpendicular to the bed) when transport stage increases, con-
sistent with grain trajectories being less perturbed by the bed
roughness at larger transport stages.

Further insights into the dynamics of bedload can be gained
from the analysis of the full statistical properties of impacts.
For each flow configuration except that at 0.02 grade slope
for which data sparsity does not allow representative statis-
tics (only one smart rock record; see Table I), we calculate the
probability density function pI.tI/ of hop times tI as pI.tI/ D
nI.tI/
NI dtI

such that
R1

tID0 pI.tI/ dtI D 1 where nI.tI/ is the number of
impacts occurring during the time interval ŒtI�dtI=2, tICdtI=2�
and NI is the total number of impacts recorded at a given flow
condition (Figure 8a). Hop times are observed to be widely dis-
tributed with pI.tI/ remaining large down to 0.03 s, meaning

Figure 9. Values of the impact efficiency parameter EI , which rep-
resents the control of bedload impact rate and velocity statistics on
seismic noise power (Equation (12)), based on the full distributions
of bedload hop times and impact velocities measured for the various
flow conditions and as a function of transport stage (Figure 8). The
dashed line corresponds to best linear fit in the log-log space, which
is applied in Figure 12(a) to set Ei .

that numerous impacts occur at hop times an order of magni-
tude smaller than those expected from bedload saltating grain
predictions (Sklar and Dietrich, 2004; using Equation (22); see
dashed vertical lines in Figure 8a as compared to solid verti-
cal lines). The corresponding impact velocities vI.tI/ for these
small hop times (Figure 8b) only weakly depend on flow con-
ditions, and are distributed uniformly versus tI for tI < 0.1 s.
In contrast, vI significantly increases (by about a factor of two)
and depends more strongly on flow conditions for tI > 0.1 s.
We do not expect these short hop times to be due to rolling
or sliding because rolling and sliding are not expected at the
high transport stages of these experiments. Instead, we inter-
pret these short hop times as implying that sometimes multiple
impacts with the bed occur at the end of a single saltation

Table II. Summary of observed seismic power Pobs (dB) averaged in the
bedload frequency range (25–50 Hz) as well as prescribed sediment flux qb

(m2 s�1) for all conducted flume experiments with various slopes S, water
discharge Q and dropped cobble numbers N

Exp. # S .grade/ Q (l s�1) N Pobs (dB) qb (m2 s�1)

1 0.02 301 10 �129 4.2e�4
2 0.05 200 3 �133.1 3.2e�4
3 0.05 200 10 �129.3 7.4e�4
4 0.05 200 100 �123.5 4.3e�3
5 0.05 400 3 �131.3 3.8e�4
6 0.05 400 10 �126.6 8.9e�4
7 0.05 400 100 �122 5.2e�3
8 0.05 600 750 �113.6 5.5e�3
9 0.08 153 3 �130.5 2.6e�4
10 0.08 153 10 �125.3 6.1e�4
11 0.08 153 100 �118.3 3.6e�3
12 0.08 153 370 small �129.4 3.6e�3
13 0.08 289 3 �128.9 4.7e�4
14 0.08 289 10 �124.8 1.1e�3
15 0.08 289 100 �114.6 6.4e�3
16 0.08 289 370 small �126.9 6.4e�3
17 0.08 289 750 �118.5 1.1e�2
18 0.08 392 3 �125.6 5.0e�4
19 0.08 392 10 �121.2 1.2e�3
20 0.08 392 100 �115.9 6.9e�3
21 0.08 392 370 small �122.7 6.9e�3
22 0.08 392 750 �115.1 1.1e�2
23 0.08 517 750 �114.4 1.55e�2

Note. Experiments with cobble numbers annotated ‘small’ are those
conducted using the set of small grains (Figure 2c).

Figure 10. Average (a) time between impacts and (b) impact velocities as a function of transport stage for the 1 to 10 (black), 100 (blue) and
750 (magenta) cobbles experiments. Error bars correspond to the standard deviation of the respective quantities calculated across smart rock
records. Dashed lines show the best linear fits Nti D 0.14�0.28

stage and Nvi D 0.51
p

RggD�0.25
stage for tests with 1 to 10 cobbles, and Nti D 0.044��0.03

stage and
Nvi D 0.16

p
RggD��0.06

stage for tests with 100 cobbles. No meaningful fit could be done for tests with 750 cobbles due to lacking observations at low
transport stage. [Colour figure can be viewed at wileyonlinelibrary.com]
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hop. Multiple bed impacts might result from the saltating grain
ricocheting off of neighboring particles on the bed before
being ejected into the flow to begin the next saltation hop.

The impact efficiency parameter EI, which represents the
control of bedload impact rate and velocity statistics on seis-
mic noise power (Equation (12)), is calculated from the smart
rock records and shown as a function of �stage and for the
various channel slopes in Figure 9. Measured values of EI

are significantly smaller than 1 (EI � 0.5 is an appropriate
approximation), and EI is observed to increase with �stage.

Particle kinematics with many moving particles
Average times between impacts and impact velocities are
shown for the 1 to 10, 100 and 750 cobble experiments as
a function of transport stage in Figure 10. Experiments with
100–750 cobbles have average times between impacts and
impact velocities about two to ten times smaller than those
with fewer cobbles; i.e. grains undergo many (up to ten times)
more impacts with much smaller (up to ten times) intensity
as transport rate increases. Not only are absolute values of
NtI and NvI modified at higher transport rates, but the scaling
relations of NtI and NvI with respect to transport stage are also
different. The significant increase of time between impacts
and impact velocities observed with transport stage at low
sediment flux (1–10 cobbles) is no longer observed for the
higher transport fluxes of 100 and 750 cobbles, where NtI and
NvI are nearly constant with transport stage, presumably due
to the increased role of particle–particle collisions relative to
particle-bed collisions.

Bedload-induced seismic noise and comparison to
theory

Observations
Observed seismic power values Pobs averaged in the 25–50 Hz
bedload frequency range (see ‘Seismic noise measurements
and Green’s function calibration’, above) are summarized in
Table II for all experiments. All measured values of seis-
mic power are shown as a function of prescribed bedload
flux in Figure 11a. Although seismic power depends signifi-
cantly on sediment flux, large scatter (deviations of up to 15
dB) is observed, as expected, due to a dependence on other
parameters related to flow hydraulics and bedload transport
characteristics.

Dependency of seismic power on model parameters
We evaluate the control of flow and sediment transport param-
eters on seismic power by examining subsets of the data and
varying only one parameter across experiments. For experi-
ments with varying sediment flux at a given slope (0.08 grade),
a single water discharge (289 l/s) and thus flow depth (0.13 m)
and a given set of grain sizes (using the large grain set), seismic
power follows a linear scaling with sediment flux, as expected
from Tsai et al. (2012) (see Figure 11b) and our revisited
model. Experiments at high sediment flux are slightly off that
scaling, although the limited number of observations prevents
us from concluding whether the discrepancy is significant of
not.

For experiments with varying water discharge and thus flow
depth at a given slope (0.08 grade), a given set of grain sizes
(using the large grain set) and constant (normalized by) sed-
iment sediment flux, we observe no clear dependency of
seismic power on flow depth or equivalently transport stage
(Figure 11c). Given the sparsity and scatter of our data, this
observation is consistent with both the predictions of Tsai et al.
(2012) and the revisited model, although the revisited model

predicts seismic power to weakly increase with flow depth,
while it is predicted to decrease by Tsai et al. (2012). The pre-
dicted increase is due to the numerous impacts with short hop
times (Figure 8a) and constant velocities (Figure 8b) regardless
of transport stage observed in our experiments, and which are
not accounted for in Tsai et al. (2012).

For experiments with varying grain diameter (from the small
to the large grain set) at a given slope (0.08 grade), constant
(normalized by) sediment flux, and for distinct values of water
discharge (either 153, 289 or 392 l s�1) and thus flow depth
(0.09, 0.13 or 0.16 m), we observe a 10 dB increase in seismic
power for an increase in grain diameter by a factor of 7/4.5
(see Figure 11d). This increase is mainly explained by the P �
D3-scaling predicted by Tsai et al. (2012), although this scaling
underestimates the observed increase by about 2–4 dB. We do
not yet have any explanation for this discrepancy, i.e. whether
it is due to specifics of our experiments or to missing physics
in the model.

Finally, for experiments with varying channel slope (0.05
and 0.08 grades) at constant transport stage �stage D 1, and
similar grain sizes (using the large grain set), we observe that
seismic power, when normalized by sediment flux, strongly
depends on slope since experiments at 0.08 grade slope gen-
erate about 4 dB more seismic power than experiments at 0.05
grade slope (see Figure 11e). This feature is not predicted by
the model of Tsai et al. (2012) since impact velocities and
rates therein only depend on slope indirectly due to the depen-
dence on transport stage (Figure 6a). However, this finding is
consistent with our smart rock observations that impact veloc-
ities have a dependency on channel slope in addition to that
due to Shields stress (Figure 6f). Accounting for this impact
velocity dependency in our improved model framework, we
explain the full range of seismic power change with slope.

Observed versus predicted absolute seismic power using
measured grain kinematics
We test predictions of absolute seismic power by holding sedi-
ment size and the number of grains constant using exclusively
experiments with three smart rocks. Figure 12 shows predicted
versus observed seismic power with and without accounting
for bedload statistics, i.e. using either EI.�stage/ � 0.6�0.1

stage or
EI D 1 in Equation (11). No model tuning has been done
to match observed amplitudes since all model parameters
were independently constrained previously from smart rocks
and other dedicated measurements (see ‘Experimental Strat-
egy, Methods and Measurements’, above). Predictions that
account for bedload statistics are within �3 dB of the obser-
vations, whereas predictions done without accounting for full
bedload statistics (as in Tsai et al., 2012) lead to a slight, �3
dB overestimate of observed seismic power.

We also use the entire dataset to evaluate the reliability of
model predictions with varying grain size and number (see
Table II and Figure 13a). We conduct model predictions for all
experiments by neglecting grain–grain interactions at high sed-
iment flux rates, i.e. assuming that grain kinematics as inferred
with individual particles remain true for sets with many par-
ticles (100–750 grains). In addition, we assume the NtI versus
�stage relationship (Figure 7b), and that the impact velocities NvI

and downstream velocities uS are independent of grain size
(except through the Shields stress dependency) such that the
NtI versus �stage relationship as well as values of NvI and uS as
inferred from smart rocks can directly be used for all other
grains. This assumption for NvI and uS is supported by both
variables being observed to directly scale with depth-averaged
flow velocity Uavg regardless of �stage (Figure 6d), while NvI

and uS as expressed as a function of �stage, i.e. as corrected
for grain size relative to flow conditions, are more scattered
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Figure 11. Measured bedload-induced, 25–50 Hz frequency seismic power Pobs (a) for all experiments as a function of sediment flux (see legend
for symbol chart and corresponding experiment characteristics in Table II) and (b, c, d, e) for subsets of the data. (b) Pobs versus qb for experiments
at constant slope (0.08 grade) and discharge (289 l s�1). The solid line shows the 1:1 scaling prediction. (c) Flux normalized seismic power Pobs=qb

versus �stage and/or H at constant slope (0.08 grade). The solid line shows the scaling prediction from Tsai et al. (2012) and the dashed line shows
that of our improved model. (d) Flux normalized seismic power Pobs=qb versus D50 for 0.08 grade slope experiments at multiple discharges (153,
289 or 392 l s�1). The solid line shows the P � D3 model prediction. (e) Flux normalized seismic power Pobs=qb versus channel slope S at �stage=1.
The solid line shows the scaling prediction from Tsai et al. (2012) and the dashed line shows that of our improved model. [Colour figure can be
viewed at wileyonlinelibrary.com]

(Figure 6b). Based on a similar argument, we also assume
that the impact efficiency parameter EI.�stage/ as empirically
defined previously holds across all grain sizes.

Predictions versus observations of seismic power collapse
onto a nearly one-to-one line (within 3 dB accuracy) for
most experiments (Figure 13a). These accurate predictions
translate into accurate inversions of sediment flux from seis-
mic noise, with inverted values of sediment fluxes falling
within a factor of two uncertainty from prescribed ones

(Figure 13b) over nearly two orders of magnitude. Estimating
sediment flux at transport capacity using the empirical rela-
tionship of Fernandez-Luque and van Beek (1976) as qbc D

5.7
q

RggD3
50.�
�.D50/ � �

�
c .D50//

3=2 (where D50 is the median
grain size of the considered set of moving grains), we find that
the sediment fluxes investigated here are more than an order
of magnitude lower than those expected at transport capac-
ity. We note, however, that our estimates of qbc, and thus the
ratio qb=qbc, should be taken with caution because qbc is asso-
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Figure 12. Predicted versus observed high-frequency (25–50 Hz) seismic power for all experiments with three smart rocks. Model predictions
use Equation (11), in which the impact efficiency parameter EI is set to (a) EI D 0.6.��=�c � 1/0.1 (accounting for bedload statistics) and to (b)
EI D 1 (not accounting for bedload statistics). Symbols indicate slope (see legend). All other parameters used in model predictions (NvI, uS and NtI )
are directly set from the smart rock measurements. [Colour figure can be viewed at wileyonlinelibrary.com]

ciated with significant (at least a factor of two) uncertainty,
and may be overestimated here (qb=qbc underestimated) due to
our experiments not allowing interchange of transported grains
with those of the bed (contrary to those of Fernandez-Luque
and van Beek, 1976), in which case D50 would be smaller.
Nevertheless, despite significant particle–particle interactions
(i.e. impacts) occurring between transported grains at the high-
est fluxes (see Figure 10), we find that our model based on the
description of particles moving individually, and thus solely
interacting with the bed, still yields appropriate predictions.
This could be explained by particle-bed impacts at the high-
est fluxes (with significant particle–particle impacts) being less
energetic but more frequent than expected for individually
moving particles at lower fluxes, such that the two effects
largely cancel out and use of formulas based on individu-
ally moving particles still yield appropriate predictions at the
highest fluxes.

Observed versus predicted seismic power using empirical
relationships for grain kinematics
Here we investigate how much uncertainty is added to
model predictions when using empirical estimates instead of
the smart-rock measured quantities as used in the previous
subsection. Figures 13c and 13d show inverted normalized
sediment transport fluxes qb=qbc for all experiments using
empirical relationships expressing average impact velocities
NvI and downstream bedload velocities uS as a function of
depth-averaged flow velocity Uavg (Figure 13c; empirical rela-
tionship is shown in Figures 6c and 6d) and transport stage
�stage (Figure 13d; empirical relationship shown in Figures 6a
and 6b). Prescribed fluxes remain accurately inverted from
seismic data for both types of model predictions, although
they are more uncertain than inversions using directly mea-
sured quantities (Figure 13b), as expected. Inverted sediment
fluxes are also more uncertain when empirical relationships
for particle transport kinematics are based on �stage rather
than Uavg because of the missing slope dependency of impact
velocities that is not accounted for in the �stage-relationships
(Figures 6e, 6f and 11e).

Discussion

The complexity of bedload kinematics is characterized by
broadly distributed and, on average, shorter than expected
times between impacts (Sklar and Dietrich, 2004) under
the rough flow conditions of our experiments. This com-
plex behavior is observed for single moving and multiple
moving particles and is likely due to highly perturbed flow
hydraulics in steep, shallow, and rough streams, which have
reduced turbulence intensity and reduced lift forces (Lamb et
al., 2017a, 2017b) and perturbed grain saltation trajectories
(Huda and Small, 2014). Despite this complexity, the relation-
ships between average quantities that define bedload trans-
port physics (for single moving particles) and flow hydraulics
exhibit similar features to those obtained in previous experi-
ments with smoother flow conditions (H is significantly larger
than D50; see ; Chatanantavet et al., 2013; Nino et al., 1994;
Nino and Garcia, 1998; Francis, 1973; Abbott and Francis,
1977; Hu and Hui, 1996). Times between impacts for single
moving particles have a relative dependence on �stage that is
similar to that proposed previously (Sklar and Dietrich, 2004),
and the average stream-wise sediment transport velocity uS

scales linearly with the depth-averaged flow velocity Uavg and
is more a function of Uavg than of �stage, as observed in previ-
ous experiments (Chatanantavet et al., 2013). The same is true
for the average impact velocity NvI oriented normal to the bed
roughness (see Figure 1b), which to our knowledge has not
been measured previously in such rough flow conditions. NvI

scales linearly with both Uavg and uS, and is more a function of
Uavg than of �stage. This later observation suggests that the vari-
ations in the vertical component of the impact velocity Nwinc

with changes in transport stage �stage (Sklar and Dietrich, 2004)
only negligibly affect the resultant impact velocity NvI, and thus
that the incident impact velocity vinc has a relatively small
angle with respect to the flow direction. Perhaps unexpect-
edly, though, impact velocity NvI is found to be nearly vertical.
Incident impact velocities being oriented mostly along flow
but impact velocities being nearly vertical can be explained
if grains maintain most of their horizontal speed, causing the
change in velocity due to impact to mostly be in the upward
direction (as shown in Figure 1b). This is still consistent with NvI

scaling with Uavg since vinc (including its vertical component
winc) scales with Uavg and NvI is simply geometrically related
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Figure 13. (a) Seismic power predictions versus observations and (b–d) inverted sediment flux versus prescribed sediment flux. Predictions are
made using (a, b) measured, grain-scale physical parameters as input and (c, d) empirical relationships expressed as a function of (c) Uavg and (d)

�stage. Sediment flux values are normalized by sediment flux at transport capacity, which is calculated as qbc D 5.7
q

RggD3
50.�
�.D50/��

�
c .D50//

3=2

(Fernandez-Luque and van Beek, 1976). Symbols indicate slope (see legends) and colors stand for cobble number. Dashed lines show a factor of
two deviations around the one-to-one relationship. [Colour figure can be viewed at wileyonlinelibrary.com]

to vinc. We note, however, that these results could also be
because smart rocks are larger than bed grains, and thus may
not hold for transported grains that are smaller.

Our experimental findings on bedload kinematics under
rough flow support the applicability of the bedload-induced
noise framework to seismic observations near mountain rivers.
The assumption in previous theory (Tsai et al., 2012) that
impacts are oriented normal to the bed remains true for rough
bed conditions, such that the use of a Green’s function for
Rayleigh waves as done in Tsai et al. (2012) may be appro-
priate. In addition, although bedload transport statistics are
far more complex than originally accounted for in previous
theory (Tsai et al., 2012), the resulting seismic noise char-
acteristics remain mostly unchanged. The broadly distributed
but, on average, shorter than expected times between impacts
are unlikely to significantly affect seismic noise spectral con-
tent, and have effects on seismic noise amplitude that turn
out to approximately cancel each other: broadly distributed
times between impacts cause about a factor of two decrease in

predicted seismic power per impact, but this effect is counter-
balanced by higher impact rates and thus seismic power being
on average about twice as high. Explicit representation of
broadly distributed times between impacts on seismic power
may be done by introducing the empirical impact efficiency
parameter EI, defined in our experiments as EI � 0.6�0.1

stage. Sim-
plification of the framework and further improvement of the
accuracy of predictions may be done by expressing uS and NvI

as a function of Uavg instead of �stage, when good field estimates
of Uavg are available. Finally, within the range of investigated
sediment fluxes, we find that particle–particle interactions
occurring at the highest flow rates have negligible effect on
seismic power, likely as a result of particle-bed impacts for
tests at the highest fluxes being less energetic but more fre-
quent than expected for individually moving particles at lower
fluxes, such that the two effects largely cancel out. Interac-
tions between transported particles at the highest fluxes may
thus be neglected when applying the bedload-induced noise
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framework, although further testing should be conducted with
bedload transport conditions near capacity.

Several problems of the bedload-induced noise framework
could not be tested in our experiments, and thus motivate
further experimental investigations. First, the ground-detached
steel flume prevented us from fully testing how bedload impact
forces applied on the flume bed convolve with typical Green’s
functions of the Earth surface. Future experiments made in
artificial channels directly coupled to the ground would be
useful to tackle this aspect. Furthermore, use of our large
flume with fixed cobble bed grains of a given size prevented
us from meaningfully testing the framework under a wide
range of transported grain sizes, although grain size is known
to have major control on seismic power. Future experiments
exploring a wider range of grain sizes would nicely com-
plement the present dataset. Finally, and to our view most
importantly, use of a fixed cobble bed in our experiments
prevented grain exchange between the bed and the bed-
load, causing uncertainties in our estimates of bedload flux
at transport capacity. In our experiments the sediment supply
was far lower than the transport capacity, as expected from
Fernandez-Luque and van Beek (1976). While limited sedi-
ment supply often leads to under-capacity transport in some
natural systems, capacity-limited transport is also common in
other places. It remains an open question as to how seis-
mic energy would be influenced by much higher transport
rates and more mobile bed surfaces. However, our experi-
ments with different sediment loads suggest that additional
particle–particle collisions, which would likely be even more
important at higher sediment loads, may have little effect on
the predicted seismic power because of the offsetting effects of
shorter times between collisions and less energetic collisions,
as described above.

Monitoring with careful field instrumentation could also
be conducted in order to fill the knowledge gaps identi-
fied based on our experiments, and to test the modeling
framework against observations in natural environments. The
deployment of dense arrays near various rivers allowing char-
acterization of the Green’s function under different lithologies
and topographies would be particularly useful. Measurements
of the Green’s function in those situations are lacking, and
the bedload-induced noise framework relies on a proper,
likely site-specific, description of the Green’s function. Field
observations that range from supply limited to near transport
capacity along a single reach of a river would also be useful
to constrain the model. For these investigations as well as for
any seismological investigation of geomorphological interest
in natural streams, one should make sure that good constraints
are available on transported grain sizes, since this parameter
exerts a primary control on bedload flux inversions that is far
greater than any uncertain parametrization related to sediment
transport dynamics. More generally, the seismic instrumenta-
tion of field sites with highly resolved in-stream measurements
of bedload transport and flow turbulence is particularly impor-
tant if one is to be able to fully test the framework and
seismic inversions at the natural scale. This step is essential to
fully demonstrate applicability of the framework to sediment
management and mitigation applications.

Finally, findings in this study can directly be extrapolated
to the prediction of bedload-induced erosion rates. Erosion
rate is expected to scale with impact velocities (squared)
and rates (linearly) just as seismic power does, such that
(i) seismic observations may be used as a proxy for fluvial
erosion, and (ii) the present findings are applicable to the
prediction of bedload-controlled erosion rates. Broadly dis-
tributed but, on average, shorter than expected times between
impacts are thus unlikely to significantly change predictions

of bedload-induced erosion rates using existing physically
based erosion models such as in Sklar and Dietrich (2004),
even for situations with multiple moving particles interact-
ing significantly with each other, in which case shorter times
between collisions and less energetic collisions may have can-
celing effects. Predictions of erosion rates could, however, be
improved by incorporating an extra bed-slope dependency for
cobble velocity uS and impact velocity NvI when expressed as
a function of �stage (see Figures 6e, 6f). This extra bed-slope
dependency for uS and NvI could be due to a geometrical
effect related to transported grains undergoing more impacts
at smaller slopes for rough beds (see Figure 7b), although fur-
ther experimental work may be required to provide a better
understanding of its origin and implications.

Conclusions

We use flume experiments to jointly investigate bedload sed-
iment transport dynamics at the grain scale using smart rocks,
and at the channel scale using seismic motion. Based on the
smart rock observations, we develop an improved model of
bedload-induced seismic noise. Our new model includes (i)
a description of impact velocity oriented normal to the bed
roughness, instead of only the vertical component of the inci-
dent impact velocity as taken as an approximation in previous
theory, (ii) time between impacts being, on average, two to
three times shorter than commonly expected from saltation
theory, and (iii) a description of full distributions of impact hop
times and velocities under given flow conditions. Account-
ing for point (i) in model predictions reduces uncertainties,
since impact velocities are found to accurately scale with
depth-averaged flow velocities. However, we also find that
using previously proposed scaling relationships for impact
velocity results in similar predictions since these velocities
are similar in magnitude to impact velocities from our new
findings. Accounting for point (i) also has little effect on seis-
mic wave generation because Rayleigh waves should mainly
be excited by the bedload source due to impact velocities
oriented normal to the bed roughness being oriented nearly
vertically. The two other points (ii) and (iii) have noticeable
effects on the amplitude of seismic power but no effects on
its frequency content. Compared to predictions from previous
theory, incorporating (ii) causes seismic power to increase by
about a factor of two, while incorporating (iii) causes seismic
power to decrease by about a factor of two. Thus our final
model predictions have predicted seismic power similar to that
predicted using previous theory.

Nearly vertical and roughness-normal impact velocities are
observed to be a linear function of average downstream cobble
velocities, and both velocities show an extra bed-slope depen-
dency that is not represented in existing saltation models.
Incorporating these effects into an improved bedload-induced
seismic noise model allows sediment flux to be inverted
within a factor of two uncertainty. This result holds over a
wide range (nearly two orders of magnitude) of prescribed
sediment fluxes, and despite significant particle–particle col-
lisions inferred at the higher fluxes. These results support the
applicability of the framework to mountain rivers, although
further experiments remain to be conducted at fluxes closer to
transport capacity.
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Notation

a Grain acceleration (m s�2) (see Equation (4))
aj Component j of smart rock acceleration (m s�2) (see

Equation (4))
Cd Drag coefficient (dimensionless) (see ‘Impact velocities

and hop times for individual particles’)
X Coefficient used for empirical fit with exponential tail

(dimensionless) (see ‘Impact velocities and hop times for
individual particles’ and Figure 6)

C1 Ratio between particle ejection or rise time and parti-
cle fall time (dimensionless) (equal to 2/3; see ‘Impact
velocities and hop times for individual particles’)

D Grain diameter (m) (see ‘Rationale’)
DSR Smart rock intermediate b-axis diameter (m) (equal to

0.09 m; see Figure 2)
DNG Natural grain diameter (m) (see Figure 2)
D50 Median grain size (m)
DL

50 Median grain size of the large grain set (m) (equal to 0.07
m; see Figure 2)

DS
50 Median grain size of the small grain set and that of the

channel fixed bed (m) (equal to 0.045 m; see Figure 2)
e Coefficient of restitution of impact (dimensionless) (see

‘Modeling principle and theory of Tsai et al. (2012)’)
EI Empirical function that describes the effect of impact

full distribution on seismic power (dimensionless) (see
‘Extension of the theory to a probabilistic framework with
impacts on a rough river bed’ and Figure 9)

f Seismic frequency (Hz) (see ‘Rationale’)
fmax Maximum seismic frequency (Hz) (equal to 50 Hz; see

‘Bedload-induced seismic noise and comparison to the-
ory’)

F Bedload source force function (N) (see Equation (2))
F2 Vertical bedload source force function (N) (see ‘Ratio-

nale’)
FI,j jth component of the single bedload impact force func-

tion (N) (see Equation (3) and ‘Extension of the theory
to a probabilistic framework with impacts on a rough
river bed’)

Fr Froude number (dimensionless) (see Table I)
g Acceleration due to gravity (m s�2) (set to g D 9.81 m s�2)
G Green’s function (m s�1 N�1) (see Equation (2))

GR Green’s function for Rayleigh waves (m s�1 N�1) (see
‘Modeling principle and theory of Tsai et al. (2012)’)

GR,2 Vertical-to-vertical Green’s function for Rayleigh waves
(m s�1 N�1) (see ‘Modeling principle and theory of Tsai
et al. (2012)’)

GF Flume Green’s function (m s�1N�1) (see ’Experimental
strategy to test the models’)

GF,2 Vertical-to-vertical flume Green’s function (m s�1 N�1)
(see ‘Green’s function calibration’)

NGF,2 Vertical-to-vertical flume Green’s function averaged in the
bedload, 25–50 Hz frequency range of interest for bed-
load transport (m s�1 N�1) (set to 7.66 � 10�8 m s�1 N�1;
see ‘Green’s function calibration’)

H Depth of flow (m) (see Table I)
Hb Bedload height (m) (see Equation (18))
OHb Non-dimensional bedload hop height (dimensionless)

(see Equation (17))
I Vertical component of the impact impulse (kg m s�1) (see

Equation (4))
ks Roughness length of the river bed (m) (here set to 3DS

50
(Kamphuis, 1974))

L Length over which sediments move (m) (see ‘Rationale’)
m Grain mass (kg) (see Equation (4))
N Total number of moving grains over length L (dimension-

less) (defined under ‘Rationale’)
NSR Number of smart rocks moving in the channel (dimen-

sionless) (see ‘Application of the modeling framework to
the experiments’)

NNG Number of natural grains moving in the channel (dimen-
sionless) (see ‘Application of the modeling framework to
the experiments’)

Ninv
SR Inverted number of smart rocks moving in the channel

(dimensionless) (see Equation (15))
Ninv

NG Inverted number of natural grains moving in the channel
(dimensionless) (see Equation (15))

NI Total number of impacts recorded by smart rocks for
a given flow configuration (dimensionless) (see ‘Impact
velocities and hop times for individual particles’)

nD Number of moving grains per unit grain size and per unit
channel length (m�2) (see ‘Rationale’)

nI.tI/ Average number of impacts occurring during the time
interval Œti � dti=2, ti C dti=2� (see ‘Impact velocities and
hop times for individual particles’)

pD Log-‘raised cosine’ probability distribution function (per
unit grain size, m�1) (see ‘Rationale’, defined in
Tsai et al., 2012)

pL
D Log-‘raised cosine’ probability distribution function of the

large grain set (per unit grain size, m�1) (see Figure 2)
pS

D Log-‘raised cosine’ probability distribution function of the
small grain set (per unit grain size, m�1) (see Figure 2)

pI Probability distribution function of hop times between
impacts (per unit time, t�1) (see Equation (5) and
Figure 2c)

P Ground seismic velocity power (m2 s�2 Hz�1) (see
Equation (1))

PTsai Vertical ground seismic velocity power as predicted from
Tsai et al. (2012) (m2 s�2 Hz�1) (see Equation (3))

PD,tI Vertical seismic power per unit grain impact, unit grain
size and unit length (m�1 s�2 Hz�1) (see Equation (5))

PSR Vertical flume ground velocity power predicted for
smart rocks moving as bedload (m2 s�2 Hz�1) (see
Equation (11))

PNG Vertical flume ground velocity power predicted for
natural grains moving as bedload (m2 s�2 Hz�1) (see
Equation (13))

Pobs Observed vertical flume seismic power averaged in the
bedload, 25–50 Hz frequency range (m2 s�2 Hz�1) (see
Equation (15))

qb Bedload sediment flux (m2 s�1) (see ‘Rationale’)
qinv

b Bedload flux as inverted from noise in our experiments
(m2 s�1) (see Equation (16))

qinv
b,SR Smart rock bedload flux as inverted from seismics in our

experiments (m2 s�1) (see Equation (16))
qinv

b,NG Natural grains bedload flux as inverted from seismics in
our experiments (m2 s�1) (see Equation (16))

qbD Bedload flux per unit grain size (m s�1) (see ‘Rationale’)
qbc Bedload flux at transport capacity (m2 s�1) (see ‘Observed

versus predicted absolute seismic power using measured
grain kinematics’, calculated from Fernandez-Luque and
van Beek, 1976)

Q Total flow discharge (m3 s�1) (see ‘Flume setup and
flow/sediment transport conditions’)

Qsub Subsurface flow discharge (m3 s�1) (see ‘Flume setup and
flow/sediment transport conditions’)

R Length of river (m) (see Equation (3))
Rg Excess grain density (dimensionless) (see ‘Flume setup

and flow/sediment transport conditions’)
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Reks Bed roughness Reynolds number (dimensionless) (see
‘Flume setup and flow/sediment transport conditions’)

S Channel bed slope (grade) (see ‘Flume setup and
flow/sediment transport conditions’)

t Time (s) (see Equation (1))
tc Contact time of an impact (s) (see Equation (4))
tI Hop time between impacts (s) (see Equation (5))
T Duration of the time window used to calculate power

spectral density (s) (see Equation (1))
u� Bed shear velocity (m s�1) (see ‘Flume setup and

flow/sediment transport conditions’)
U Ground seismic velocity (m s�1) (see Equation (1))

uinc Horizontal component of the incident impact velocity
(m s�1) (see Figure 1)

Usub Subsurface depth averaged velocity (m s�1) (see ‘Flume
setup and flow/sediment transport conditions’)

Uavg Depth-averaged flow velocity (m s�1), excluding subsur-
face flow (see ‘Flume setup and flow/sediment transport
conditions)’

Uavg,c Critical depth averaged flow velocity for grain motion (see
‘Impact velocities and hop times for individual particles’
and Figure 6)

uS Average stream-wise bedload velocity (m s�1) (see ‘Ratio-
nale’)

V Grain volume (m3) (see ‘Rationale’)
VSR Smart rock volume (m3) (see Equation (11))

VNG Natural grain volume (m3) (see Equation (13))
vI Impact velocity as measured from the smart rock, i.e.

impact velocity normal to bed roughness (m s�1) (see ‘Par-
ticle transport kinematics from smart rocks’ and Figure 1)

vI,j Component j of the impact velocity oriented normal to
bed roughness (m s�1) (see Figure 1)

vinc Incident impact velocity (m s�1) (see Figure 1)
vout Reflected impact velocity (m s�1) (see Figure 1)
W River width (m) (equals 1 m in our experiments; see

‘Flume setup and flow/sediment transport conditions’)
winc Vertical incident impact velocity (m s�1) (see Equation (4)

and Figure 1)
wref Vertical reflected impact velocity (m s�1) (see

Equation (4))
wdrop

inc Vertical incident impact velocity in cobble drop cal-
ibration experiments (m s�1) (see ‘Flume setup and
flow/sediment transport conditions’)

wdrop
ref Vertical reflected impact velocity in cobble drop cal-

ibration experiments (m s�1) (see ‘Flume setup and
flow/sediment transport conditions’)

ws Average settling velocity (m s�1) (see Equation (23))
wst Terminal grain settling velocity (m s�1) (see Equation (17))
x0 Reference coordinate vector of a given grain within the

channel (m) (see Equation (2))
x Reference coordinate vector of the seismic station (m) (see

Equation (1))
z Elevation above the bed (m) (see Figure 1)

zdrop Height used for grain drop calibration experiments (m)
(see ‘Experimental Strategy, Methods and Measurements)

˛ Exponent for extrapolation of critical Shields stress to var-
ious grain sizes (dimensionless) (equal to 0.9; see ‘Flume
setup and flow/sediment transport conditions’)

ıv Velocity variation due to an impact (m s�1) (see ‘Particle
transport kinematics from smart rocks’)

� Thickness of the subsurface layer (m) (see ‘Flume setup
and flow/sediment transport conditions’)

� Coefficient that expresses inelastic energy dissipation
during impact (dimensionless) (see Equation (4))

� Water kinematic viscosity (m2 s�1) (see ‘Flume setup and
flow/sediment transport conditions’)

� Water density (kg m�3) (equal to 1000 kg m�3; see ‘Flume
setup and flow/sediment transport conditions’)

�s Grain density (kg m�3) (equal to 2600 kg m�3; see ‘Flume
setup and flow/sediment transport conditions’)

� Standard deviation of the equivalent normal distribu-
tion of the log-‘raised cosine’ distribution (dimensionless)
(equal to 0.12; see ‘Flume setup and flow/sediment trans-
port conditions’ and Tsai et al., 2012)

�b Bed shear stress (N m�2)
�stage Transport stage (dimensionless) (see ‘Flume setup and

flow/sediment transport conditions’)
�� Shields stress (dimensionless) (see ‘Flume setup and

flow/sediment transport conditions’)
��c Critical value of Shields stress (dimensionless) (see ‘Flume

setup and flow/sediment transport conditions’)
��c,SR Critical value of Shields stress for smart rocks (dimen-

sionless) (see ‘Flume setup and flow/sediment transport
conditions’)

��c,NG Critical value of Shields stress for natural grains (dimen-
sionless) (see ‘Flume setup and flow/sediment transport
conditions’)

� River slope angle (°) (see ‘Impact velocities and hop times
for individual particles’)

‚I Impact angle relative to vertical (°) (see Figures 1b and 7)
‚inc Incident impact angle relative to horizontal (°) (see

Figure 1b)
‚mod Modified impact angle once corrected from the local bed

surface slope (°) (see Figure 1b)

 Fraction of smart rocks versus natural grains moving in the

channel (dimensionless) (see ‘Application of the modeling
framework to the experiments’)

Appendix A : Critical Shields Stress Estimates
from Dry Friction Experiments and Empirical
Modeling

The dry friction angle was obtained from tilt-table experiments
in which a smart rock was deposited on a small-scale replica
of the flume cobble bed (the bed was made of grain sizes sim-
ilar to those in the large-scale flume), which then was tilted

Figure A.1. Normalized histogram of smart rock dry friction angle
values obtained from tilt-table experiments. The red vertical line indi-
cates the average value of 36° used to calculate critical Shields stress.
[Colour figure can be viewed at wileyonlinelibrary.com]
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progressively until the smart rock was dislodged and fell down
(Miller and Byrne, 1966). The critical angle for smart rock
motion was recorded, and this procedure was repeated 70
times. The probability density function of all friction angles
is shown as a histogram in Figure A.1. We found an aver-
age friction angle of �0=36°˙11°, where 11° corresponds to
1 sigma. This value is relatively low compared to those pre-
viously found in other studies (e.g. 41–59° in Prancevic and
Lamb, 2015). This may be explained by smart rocks being
bigger than the relatively densely packed rocks glued to the
bed, such that the smart rock is often sitting on top of the bed
roughness and therefore offers little frictional resistance.

Figure A.2. Time series of sediment flux qb obtained from counting
pebbles using overhead high-rate videos. The blue line shows mea-
surements conducted every 2 s, and the red dot shows the maximum
sediment flux value that is compared with maximum recorded seis-
mic power (see red dots in Figure 3b). [Colour figure can be viewed
at wileyonlinelibrary.com]

We converted the dry friction angle found from the tilt-table
experiments into critical Shields stress values by using the aver-
age and fluctuating flow velocities of the hydraulic model of
Lamb et al. (2008b) with zero form drag. Using smart rock
diameter DSR D 9 cm, setting bed roughness ks equal to
median grain size D50 D 4.5 cm and neglecting morpholog-
ical form drag as well as wall shear stress, we predict ��c,SR to
be equal to 0.0210, 0.0315 and 0.0451 for our investigated
slopes of 0.02, 0.05 and 0.08 grades, respectively.

Appendix B : Bedload Sediment Flux
Calculations

At low and intermediate sediment fluxes (with
1–350 cobbles)

We relate the number of grains N moving in the channel with
sediment flux qb a posteriori by assuming that all grains are
uniformly distributed over length L of the sediment pulse and
across the width W of the channel. Under this assumption, N
is related to the number of grains nD per unit grain size and
per unit pulse length as

N D
LnD.D/
pD.D/

(A.1)

where pD.D/ is the grain size distribution function (per unit
grain size) and nD relates to sediment flux as (see also main
text, ‘Rationale’)

nD D
WqbD

VuS
. (A.2)

Substituting the definition of nD in Equation (A.2) into the
definition of N in Equation (A.1), we find that qb depends on
N as

qb D
NuS

WL

Z
D

pDV .D/dD. (A.3)

Equation (A.3) is used in the main text to calculate the sed-
iment flux qb,NG of NNG natural grains with various diameters

Figure A.3. Linking smart rock acceleration records with impact characteristics from submerged smart rock drop experiments. (a) Average smart
rock velocity time series obtained from time integrating the smart rock acceleration records around each impact of a given drop height. Empty
circles highlight impact incident velocities Nwdrop

inc and filled circles highlight impact reflected velocities Nwdrop
ref . Red dots indicate acceleration maxima

automatically picked for each impact. (b) Zoom on smart rock acceleration records for three arbitrarily selected impacts of the 4 cm drop height
experiments shown in Figure 1a. (c) � -values obtained from the impact velocity changes shown in (c) (see Equation (4)). The dashed line indicates
the average � -value of 1.13. [Colour figure can be viewed at wileyonlinelibrary.com]
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(Figure 2c). A simpler form is obtained for sediment flux qb,SR

of NSR smart rock since those all have approximately the same
diameter, in which case pD.D/ for smart rocks is a Dirac delta
function (Figure 4.2.1) and we have qb,SR D NSR

uS VSR
WL . Total

sediment flux qb for each experiment is then calculated as
qb D qb,NG C qb,SR.

At the highest sediment fluxes (with 750 cobbles)

For the high sediment flux rates of experiments with 750 cob-
bles, we infer sediment flux using overhead videos taken in
the middle range of the flume test section. Using these videos,
we manually counted the number of cobbles Nt that crossed
a given line (colocated with the seismometer) over a given
time window (using a 2 s time window to match that used
to calculate power from the seismic record). Sediment flux
at time t is calculated as qb,t D

Nt
WT

R
D pD.D/V .D/dD, and is

shown in Figure A.2 for the experiment at 0.08 grade slope
and 392 l s�1 discharge (see Table II). The maximum value
of sediment flux (highlighted by the red dot) is then used to

compare with the maximum recorded seismic power (see red
dots in Figure 4b).

Appendix C : Using Calibrated Smart Rock
Records to Infer Impact Velocities During
Sediment Transport

Smart rock calibration

Smart rocks impacted the flume cobble bed after a free fall
from a given height and with small enough rotation that veloc-
ity time series can be reconstructed by integrating the vertical
acceleration time series over the impact time. Eighty drops
were performed at heights from 1 to 10 cm above the cobble
of the bed. All spikes observed in the smart rock acceleration
record match impacts (Figure 3b). Thus the 512 Hz smart rock
sampling rate is high enough to detect every impact, although
it is insufficient to resolve the details of the acceleration time
series during the impact because impacts are detected over
only two to three measurement points (Figure A.3a). Maximum

Figure A.4. Comparing smart rock records with expected impact source functions. (a) Maximum picked impact acceleration Napick
max as a function of

average incident impact velocity Nwinc. (b, c) Impact acceleration function in the (b) frequency and (c) time domain as inferred from
R tc

tD0 a.t/ D I,
where I is obtained independently from trajectory reconstruction (Figure A.3) and a.t/ is assumed to be of the form a.t/ D amax sin.� t=tc/ˇ with
ˇ D 4; tc D 6 ms (dashed lines) and ˇ D 1; tc D 3 ms (solid lines). [Colour figure can be viewed at wileyonlinelibrary.com]
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acceleration values during impacts as well as impact contact
times are consistent with those expected from Hertzian the-
ory (see next subsection), which gives us confidence in the
acceleration magnitudes measured with smart rocks. Velocity
time series from before and after the impact are calculated for
each drop experiment and then averaged together using the
impact time as the origin time (Figure A.3a). For each average
velocity time series of a given drop height, we calculate � D
1Cj Nwdrop

ref = Nw
drop
inc j (Equation (4)) by picking the average incident

(negative) velocity Nwdrop
inc and the average reflected (positive)

velocity Nwdrop
ref (see colored circles). � is height independent

and exhibits an average value of 1.13 (Figure A.3c).

Consistency with Hertz’s theory

Averaging maximum smart rock acceleration values Napick
max

(Figure A.4a), we find that Napick
max scales with incident veloc-

ity Nwdrop
inc to the power 1.19, i.e. roughly to the power 5/4 as

expected from Hertz’s theory (Farin et al., 2015). Our smart
rock measurements are also consistent with the impact accel-
eration function being of the form a.t/ D amax sin.	 t=tc/ˇ,
where ˇ is a given exponent. Using values of tc ranging from
3 ms for ˇ D 1 to 6 ms for ˇ D 6 (Figure A.4c) allows us to
verify the condition

R tc
tD0 a.t/ D I, where I is obtained inde-

pendently (Figure A.3). We thus conclude that our smart rock
measurements are consistent with typical impact acceleration
functions described in the literature (e.g. Hunter,1957). We are
unable, however, to discriminate the exact values of tc and ˇ,
though we note that uncertainties on these parameters do not
significantly affect seismic energy in the frequency range of
interest (below 50 Hz, Figure A.4b).

Calculation of impact velocities during transport

Impact velocity vI for bedload transport experiments was
obtained by (i) picking impact-induced spikes in the accelera-

tion magnitude time series calculated as a.t/ D
qP3

jD1 aj.t/2,
where aj is acceleration along component j (see Figure A.3d);
(ii) calculating the velocity variation ıv D vI C vR (where vR is
the reflected impact velocity normal to the bed roughness) for
each impact by integrating a.t/ over the three measurement
points from before and after the impact; and (iii) calculat-
ing the impact velocity vI as vI D ıv=� using � D 1.13 as
found in the calibration experiments presented under ‘Impact
mechanics of smart rocks’.

Appendix D : Interpretation of the seismic
records

Spectral and temporal signature

Seismic power decreases with frequency whether or not bed-
load occurs in the channel. This spectral signature in the
seismic record is partly due to flume resonance preferen-
tially enhancing low frequencies and partly to laboratory
water pumps preferentially generating noise at low frequen-
cies (<25 Hz). Those times when sediments were poured
into the channel are characterized by high, short-lived seis-
mic power levels (see dashed lines in Figure 4) caused
by cobbles strongly impacting the channel bed after hav-
ing been manually dumped from 50 cm above the bed.
Seismic power then increases steadily though time as cob-
bles are progressively entrained by the flow, and reach a

maximum when most cobbles are simultaneously in motion
(see solid lines in Figure 4) before it decreases again as
cobbles leave the test section and come to rest in the
end box.

Definition of the Green’s function

Substituting the definition of ground velocity U.f /
(Equation (1)) into the definition of seismic power P.f /
(Equation (2)), we express the vertical-to-vertical veloc-
ity Green’s function GF,2.f / for a given impact as
GF,2.f / D

p
T � P.f /=FI,2.f /2 where P.f / is the seismic

power calculated from the seismogram of duration T result-
ing from the impact, and FI,2 is the impact source force
defined as FI,2 D I D �mwdrop

inc (Equation (4)). We calcu-
late a reference Green’s function GF,2.f / using T D 2 s
for a reference impact nearby the seismometer (see black
dot in Figure 5) using wdrop

inc D
p

2gzdrop and � D 1.13 as
found under ‘Impact mechanics of smart rocks’ (Figure A.5).
In the frequency range of interest for bedload, we obtain
NGF,2.25 < f < 50/ D 7.66 � 10�8 m s�1/N. Using this
measurement, we assume that the impact used for cali-

Figure A.5. Definition of the reference Green’s function from a cob-
ble impact conducted at the location indicated by the black dot in
Figure 5. (a) Seismic ground velocity time series including waves due
to the impact and (b) seismic power associated with the impact (thick
red) and with background noise (thin black). Since impact force spec-
trum is flat, the red line also corresponds to the Green’s function with
associated values shown on the right y-axis. The gray area shows
the bedload frequency range in which the Green’s function is aver-
aged to conduct model predictions. [Colour figure can be viewed at
wileyonlinelibrary.com]
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bration is instantaneous relative to the seismic sampling
time, and that the parameter � as inferred previously in
resting water is similar in air. The former assumption is sup-
ported by the time of impact in air being shorter than that
in water, which has already been shown to be instanta-
neous relative to the 25–50 Hz seismic sampling frequency
of interest (‘Impact mechanics of smart rocks’). The latter
assumption is supported by the fact that the Stokes num-
ber is of the order of 103 or larger for impacts in water
or air, respectively, and that for these high Stokes num-
bers the surrounding fluid is not expected to significantly
affect � (Gondret et al., 2002).
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