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Supplementary Material: Model of ground temperature

Here we derive a model that describes the diurnal and annual cycle in temperature at the Cattle
Grid Mine site as a function of its paleolatitude during a snowball glaciation. Both geological ob-
servations of the sand wedges (Fig. 2) and sedimentary structures indicate the presence of an active
aeolian sand sheet and dunes during the development of the wedges, implying that the surface was
bare throughout the year. The model describes the temperature at the surface and in the regolith
below assuming snow-free surface conditions.

The zonal-mean climate during a snowball glaciation differed from modern conditions due to
factors including a smaller thermal inertia associated with ice covering the oceans and a higher
surface albedo (Pierrehumbert et al., 2011). Simulations of a snowball glaciation using compre-
hensive climate models vary substantially depending on how quantities such as surface albedo are
parameterized (e.g., Fig. 5 in Pierrehumbert et al., 2011). Here we adopt a simpler approach and
assume that the amplitudes of the diurnal and annual cycles in temperature at a location with bare
land during a snowball glaciation would be similar to a location with bare land at the same lati-
tude in the modern climate, which is consistent with the range of results for the annual cycle from
comprehensive climate models (Pierrehumbert et al., 2011). In order to describe the characteris-
tic meridional structure of modern observed surface temperature variability over land, we use a
combination of observed temperature variability and the most salient physics involved with peri-
odic variability that arises from a linear response to solar insolation, drawing on previous energy
balance models of Earth’s climate (North et al., 1981). This approach focuses only on periodic
temperature variability, rather than including a representation of the annual-mean temperature, and
it treats the vertical structure in the atmosphere, horizontal energy transport, the planetary albedo,
the dependence of outgoing infrared radiation on surface temperature, and the effective heat ca-
pacity associated with surface temperature changes as constant. Scalar parameters that describe
the heat capacities associated with annual and diurnal variability in the model are derived from
observations of modern temperature variability.

Solar insolation

The analytical formula for insolation reaching the Earth as a function of latitude and season is
derived in a number of textbooks (e.g., Sec. 2.7 of Hartmann 1994 and Sec. 7.3 of Pierrehumbert
2011), and the relevant points for this discussion are summarized below. We consider a circular
orbit because the eccentricity of Earth’s orbit is expected to be negligible for the purposes of this
model. In this case, the insolation is

s() {Sc[sinq)sinﬁ—i—cos(l)cosScosh] —ho < mod(h+m,2n) — 1 < ho [day] 0

0 otherwise [night]

Here S, = 1285 Wm™2 is the solar constant (94% of its present value), ¢ is latitude, § is the
declination angle (latitude of the point on Earth’s surface directly under the sun at noon), 4 is the
hour angle (longitude of the subsolar point relative to its position at noon), and /g is the hour angle
at sunset (with —hq being sunrise). The declination angle is computed from

sin(d) = sin(g) sin(A) )

with being obliquity and A being the solar longitude of Earth’s orbit (angle between vernal equinox
and the position in Earth’s orbit). We use the modern value of obliquity by default, € = 23.4°, and



we also consider a high-obliquity world with € = 54°. For a circular orbit, A varies at a uniform
rate during the course of the year. The hour angle at sunset is computed from

cos(hg) = —tan(¢)tan(9) 3)

except when |¢| > T — ||, which occurs during polar day and polar night. In this case, when ¢ and
d have the same sign (polar day) we use iy = T and otherwise (polar night) we use hy = 0. We use
a measure of time (¢) that is normalized by the diurnal period, i.e., we measure time in days. In
this case, the hour angle is 4 = 2mr and the solar longitude is A = 27z /365. This fully specifies the
insolation S(¢) at each latitude ¢.

Next, we separate the insolation into discrete frequency components. For each latitude, we
numerically generate a one-year time series of S(¢) at N evenly-spaced times. The mean value is

1
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and we calculate each sinusoidal component n with period P, using the Fourier transform,
2 . omit/P
Y, = NZe "S(t), (5)

where the factor of 2 accounts for both positive and negative frequencies. The amplitude (S,,) and
phase (0,) of each Fourier component is given by
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We isolate the annual (P; = 365), semiannual (P, = 365/2), and diurnal (P; = 1) components as
the dominant frequencies of variability. Neglecting all other frequencies, the insolation is hence
approximated as

S(t) = Sp+ S; cos <2—nt — 91> + S5 cos (Z_J'Ct — 92) + S3cos <2—ﬂ:l‘ — 93) . @)
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In Fig. 8a,c, we plot the range of each frequency of net solar forcing, 2(1 —a.,)S,, as a function of
latitude, where o), is the planetary albedo. Diurnal variability dominates in low to mid latitudes and
annual variability dominates in high latitudes. The semiannual component is important near the
equator, where the sun passes overhead twice per year, as well as in high latitudes where polar night
causes the seasonal variability to depart substantially from an annual sinusoid. The annual cycle
dominates over the semiannual cycle in the latitudes of interest for this study (7°-14°), and this
dominance is felt even more strongly at depth in the sandy regolith due to longer period variability
penetrating more deeply (as described below). Hence for simplicity we focus here only on the
annual and diurnal components of variability in solar radiation, S and S3.

Surface temperature

We let the annual and diurnal frequency components of the surface temperature evolution, 7,
evolve as a linear function of the net solar forcing, (1 — a,)S,. The proportionality constant is
chosen based on modern observations of surface temperature variability over land. The physical
basis for this relationship is discussed below.



We consider the evolution of the surface temperature (7;) subject to solar insolation of a single
frequency superimposed on the annual mean. Assuming a single column with no horizontal energy
transport in the atmosphere, the surface temperature evolution can be approximated as
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Here ¢, is the heat capacity associated with changes in 7; on the timescale indicated by n. Since we
are interested in the temperature variability at an ice-free location, we use an approximation of the
ice-free modern planetary albedo based on satellite observations (Graves et al., 1993), o, = 0.2 +
0.36sin? (0). The parameters L,, and Ly represent the infrared radiation to space as a linear function
of the surface temperature, with 7;, being the melting point; this approximation is commonly made
in simple climate models (e.g., North et al., 1981). The linear system (8) can be solved exactly as
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Here we have neglected the transient term in the solution to eq. (8) associated with the decay of the
initial condition. Annual and diurnal amplitudes (7},) can be considered together in this framework
by linear superposition of the solutions for the two frequencies.

In principle, the entire denominator in eq. (11) is adjusted to match temperature variability
over land in modern observations. This is equivalent to the more physically intuitive approach
of letting Ly = 2 Wm~2K~!, which is a typical value used in simple climate models (e.g., North
et al., 1981), and adjusting the parameter ¢, which includes the heat capacity of the sandy regolith
and the atmospheric column above. Due to the dependence of the diffusive penetration depth
on the frequency of the forcing (as described in the following section), the diurnal cycle is not
expected to have the same effective heat capacity as the annual cycle. Using the latter approach,
we choose values of ¢, for the diurnal and annual cycles to match the amplitudes of variability over
land in modern observations (New et al., 1999) when the solar constant in the model is set to the
modern value (Sy = 1370Wm~2), which leads to ¢; = 3 x 10’Jm 2K ! for the annual cycle and
c3=0.1x 10’IJm~2K~! for the diurnal cycle. This set of parameters fully specifies the amplitudes
of diurnal and annual cycles in surface temperature, 7;,, which will be used in the following section
to force variability within the regolith below. In Fig. 8b,d we plot the surface temperature annual
range (277) and diurnal range (273) as a function of latitude.

We note that the planetary albedo above ice-free columns may likely have been different during
a snowball glaciation compared with today due to differences in clouds and atmospheric compo-
sition. Similarly, the heat capacity of the atmospheric column may have been reduced due to
the lower humidity. However, the dramatic differences in penetration depth between annual and
diurnal forcing (Fig. 8) is expected to dominate over these factors.


ewing
Typewritten Text
8


Thermal diffusion in sandy regolith

We consider the ground as a one-dimensional thermally diffusive medium of infinite depth with
sinusoidally-varying surface temperature specified from eq. (9)-(11). An alternative approach
would have been to use a single thermodynamic model of the column of ground below an at-
mospheric column, but we choose to model the atmosphere—surface system separately (discussed
above) as a forcing on the subsurface ground in order to more transparently match the surface
temperature variability with modern observations. In the interior (0 < z < ), we model the tem-
perature field 7(z,¢) to evolve according to

oT 0T
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with the surface boundary condition
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Note that here, as above, the response to the total forcing can be calculated using linear superpo-
sition of the separate frequencies. Using a sandy regolith thermal diffusivity of « = 1.1 x 107°
m?/s as in previous work (Maloof et al., 2002), this leads to A = 0.17m for diurnal variability and
A = 3.3m for annual variability. These values are shown with one significant figure in the main
text. Note that thermal diffusivity values for sandstone are approximately the same as those used
here, being kK~ 1.12 x 107® m?/s.

Heat transport into permafrost is typically modeled as a diffusive process (Riseborough et al.,
2008). However, once melting occurs at the surface, advection of heat by liquid water (Rowland
et al., 2011) could make our estimates of seasonal ground temperature fluctuations at depth con-
servative. Heat is also lost by the ground due to latent heating during the melt of the pore ice and
gained during the freeze of the pore water, which would reduce our diffusive estimates of seasonal
ground temperature fluctuations at depth by a factor that depends on the concentration of ice in the
regolith. Note that these processes may also influence the value of ¢, in eq. (11). The presence of
sand wedges rather than ice wedges, as well as the aeolian sand sheet, suggests an arid paleoenvi-
ronment where ground ice concentrations, guided by modern observations (Berg and Black, 1966;
Bockheim et al., 2007; Campbell et al., 1998), may have been only a few percent.

In order to get an approximate scaling for the influence of latent heat of phase changes within
the regolith, we consider a phase boundary between liquid and solid that migrates vertically in a
thermally diffusive medium in response to a change in the surface temperature, which is a Ste-
fan problem. When the surface temperature above a frozen column of pure material is suddenly
warmed to a temperature AT above the melting point, the liquid-solid interface will propagate

downward according to
2Kc,ATt
h=/ C+ (16)



where £ is the depth of the interface, ¢, is the specific heat capacity above the solid-liquid inter-
face, L is the latent heat of fusion, and 7 is time (Worster, 2000). The solution (16) requires the
approximation that the Stefan number, S = L/(c,AT), is large. Here we use the Stefan solution
(16) to estimate the depth of thaw penetration, which is a standard procedure in permafrost model-
ing (Riseborough et al., 2008). We use a latent heat of fusion of L = yLy, where Ly = 3 X 102 J/gis
the value for pure ice and 7 is the fraction of the ground that is ice rather than sand. We use ¢, =1
J/g/K for the heat capacity of the sand/water mixture above the phase interface, which is a typical
value for sand. We consider several values for the seasonal ground surface positive degree days,
ATt. For a 14° paleolatitude with annual-mean temperature of 0°C, ATt = T1(1yr)/nt = 2.4K yr,
where 71 = 7.5K is the surface temperature annual cycle amplitude (half the annual range plotted
in Fig. 8b) and we have used that fé) S sin27xdx = 1 /m. Solving eq. (16) for y, we find that in order
for the thaw to penetrate to a depth of at least 47 = 4m with these parameter values, the ice content of
the regolith would have to be less than y= 0.03. For a 14° paleolatitude with annual-mean temper-
ature of 2.5°C, integration of the positive values of the vertically-shifted sinusoidal surface ground
temperature yields ATt = 1.3K yr, which corresponds to an ice content of y = 0.02 for 4m thaw
penetration. For a 7° paleolatitude with annual-mean temperature of 0°C, ATt = T; (lyr)/n=1.2K
yr using 71 = 3.9K from Fig. 8b, and y = 0.02 for 4m thaw penetration. This implies that if only
diffusion causes heat transport into the ground, the ice content of the regolith would have to be a
few percent or less in order to allow periodic melting from the surface down to 4m depth driven
by the seasonal surface temperature variations we calculate for 7° to 14° paleolatitude, with lower
required ice contents for annual-mean temperatures farther from 0°C. Advection by liquid water,
however, would allow for the possibility of larger ice contents within the ~4m freeze-thaw zone.
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