
1.  Introduction
Understanding the cycle of sediments to become sedimentary rocks that might preserve organic compounds and 
biosignatures, and how these rocks then become exposed at the surface for study and sampling, is essential to 
guide rover exploration. The Curiosity rover benefitted from this knowledge in its discovery of preserved organics 
(Eigenbrode et al., 2018; Freissinet et al., 2015). The study of sedimentary rocks and processes on Mars, as on 
Earth, must necessarily involve analysis of the characteristic attributes of strata as well as their bounding surfaces, 
which in all cases represent some degree of temporal discontinuity (Sadler, 1981). Early studies of Martian strata 
showed that sedimentation was discontinuous, as revealed, for example, by the break in accumulation implied 
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Plain Language Summary  The discovery of sedimentary rocks on Mars is relatively recent. On a 
planet that apparently lacked plate tectonics, one important question is whether or not there is a rock cycle in 
which sediments become rocks that then are exhumed and recycled back into the crust through renewed burial. 
Rover missions have confirmed the existence of the first part of this cycle—erosion, transport, deposition, and 
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exhumation events at Gale crater. Furthermore, the ancient erosion surface is then overlain by a younger series 
of sedimentary rocks, which demonstrates burial of that unconformity surface and the completion of the rock 
cycle. On Earth, exhumation is driven by tectonic uplift, followed by erosion via rainfall and fluvial processes; 
on Mars, exhumation was driven entirely by eolian erosion and deflation. Understanding the sedimentary rock 
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Key Points:
•	 �Paleotopographic mapping is 

consistent with an erosional 
unconformity between the Mt. Sharp 
group and Stimson formation

•	 �Lateral variations in paleorelief are 
regionally present along the contact at 
the base of the Stimson formation

•	 �Erosion and exhumation were likely 
driven by eolian processes and a 
transition from wet to dry climate 
transition
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by the exhumation of a cratered surface in the 5-km-high central mound of Gale crater, Aeolis Mons (informally 
known as Mt. Sharp) (Malin & Edgett, 2000).

Early analysis of orbital images and spectra of sedimentary strata exposed in the lower ∼350 m of Mt. Sharp strata 
identified several stratigraphic units of uncertain genesis (Anderson & Bell, 2010; Le Deit et al., 2013; Malin 
& Edgett, 2000; Milliken et al., 2010; Thomson et al., 2011). Ground mapping by the Curiosity rover showed 
these rocks to correspond with the fluvial-deltaic Bradbury group plus the overlying-interfingering lacustrine 
Murray formation of the Mt. Sharp group, both of which were apparently truncated during exhumation and then 
unconformably overlain by “draping strata” (Grotzinger et al., 2015). These draping, or onlapping, strata were 
subsequently designated the Stimson formation and interpreted as cross-bedded eolian dune facies (Banham 
et al., 2018, 2021). The Murray formation exposed in the area of the contact described here shows exclusively 
deeper lacustrine facies with no evidence for exposure or desiccation (Fedo et al., 2018; Hurowitz et al., 2017; 
Stack et al., 2019).

Stimson formation sandstone grains display high roundness and sphericity and form sets of cross-bedding up to 
1 m in thickness. Bedsets are bounded by sub-horizontal surfaces that can be traced laterally for tens of meters. 
Much of the cross-bedding is formed as wind-ripple strata (Banham et al., 2018, 2021). The hypothesis that the 
contact between the Murray and Stimson formations is a significant unconformity, involving denudation of the 
Mt. Sharp group, predicts local paleotopographic variability along the base of the Stimson formation, in addition 
to truncation of older strata.

Here we investigate this hypothesis through the systematic, detailed characterization of lateral variations in eleva-
tion and geologic expression of the Murray-Stimson contact in the area extending from Amargosa Valley to the 
Murray Buttes (Figure 1). This corresponds to a stratigraphic level between −4,460 m and −4,370 m (Figure 1) 
Rover observations are integrated with larger scale geologic mapping and topographic analysis based on High 
Resolution Imaging Science Experiment (HiRISE) orbiter data in order to quantitatively reconstruct the topogra-
phy associated with the contact.

2.  Data and Methods
2.1.  Rover Image-Based Mapping

Image data were collected by the rover's fixed-focal-length (34 mm M-34 and 100 mm M-100) Mast Camera 
(Mastcam) during Curiosity's traverse between sols 955 and 1,454 and mosaicked together. Pixel scale varies 
across and within each mosaic. The M-100 field of view yields a 7.4 cm/pixel scale at 1 km and ∼150 μm/pixel 
at 2.1 m (nearest view to the surface), whereas the M-34 yields a 22 cm/pixel scale at 1 km and 450 μm/pixel at 
2.1 m (Malin et al., 2010).

We mapped the Murray-Stimson contact in selected rover image mosaics based on several distinguishing physi-
cal characteristics for each unit: the Stimson formation is a darker-toned (though it can be light-toned when dust 
covered), resistant, ridge- and talus slope-forming, platy-weathering, medium-grained, cross-bedded, sandstone 
(Banham et al., 2018, 2021). In contrast, the Murray formation is a lighter-toned, recessive-weathering lithology 
that does not produce large talus blocks (Edgar et al., 2020; Morris et al., 2016; Stack et al., 2019). The Murray is 
largely fine-grained mudstone that is thinly to thickly laminated (observable in low light parallel to the surface), 
with interstratified sandstone lenses, crosscut by abundant Ca-sulfate-filled veins (see Grotzinger et al., 2015 
for stratigraphy). The tone difference between these units is similarly evident in their orbital signature, which is 
lighter for the Murray and darker for the Stimson. The units are also distinguishable based on their geochemistry 
(see Section 3).

2.2.  Mastcam-HiRISE Coordinated Mapping

High-resolution visible wavelength images (up to 0.25 m/pixel) acquired by HiRISE on the Mars Recon-
naissance Orbiter spacecraft were also used in this study for detailed photogeologic mapping of the 
Murray-Stimson contact. Digital terrain models (DTM) (1 km/pixel) produced from HiRISE stereo image 
pairs (Kirk et al., 2009; McEwen et al., 2007) were used to determine the topography of the paleosurface 
at the Murray-Stimson contact. HiRISE color image mosaic maps were co-aligned with a high-resolution 
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Figure 1.  (a) Regional context map of Curiosity rover traverse and sol locations (yellow dots) within lower Mt. Sharp on a High Resolution Imaging Science 
Experiment (HiRISE) image mosaic; study locations outlined in dashed boxes color-coded by region (also locations of Figure 3), with the mapped Murray-Stimson 
contact in dark blue. Inset map showing colourized topography of Gale crater from the Mars Orbital Laser Altimeter (MOLA); white box outlines area shown. Small 
black box denotes location of (b). White line is the representative transect defining modern regional slope in (c). (b) Mastcam mosaic 4,334 (Mastcam-100 lens) 
acquired on sol 983 with the mapped Murray-Stimson contact at Mt. Stimson in the Marias Pass region. Location of Figure 4 also shown. (c) Plot of elevation versus 
distance along regional contact in a mostly NE-SW direction (colors correspond to boxed location along the transect in (a); darker shades denote contact mapped in 
Mastcams; lighter shades, HiRISE), including modern topography along cross-section through mapped areas (white line in (a)). Relative distance is provided by the 
MOLA topographic coordinate frame. (d) Stratigraphy of the foothills of Mount Sharp showing the location of key units. The Stimson formation has been encountered 
at two locations; a lower level, described here, exposed from −4,460 m to −4,370 m in elevation and an upper level exposed from −4,090 m to −3,940 m (see Banham 
et al., 2021).
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DTM mosaic generated for the Mars Science Laboratory (MSL) project from twelve HiRISE stereo pairs that 
were processed, projected, georeferenced, and mosaicked to create a DTM with 1 m grid spacing, absolute 
elevations tied to Mars Orbiter Laser Altimeter (MOLA) data, and an expected vertical precision on the 
order of 0.2–0.3 m (Calef et al., 2013; Golombek et al., 2012; Kirk et al., 2009). A running histogram color 
stretch that maximizes the dynamic range on ∼5,000 × 5,000 pixel segments of the image was also applied 
to highlight distinguishing properties and differentiate between the two formations (Edwards et al., 2011; 
Fraeman et al., 2016).

Figure 2.  Locations and compositional classification of ChemCam and APXS geochemical targets in stratigraphic context along the independently mapped contact 
(white line) in (a) Marias Pass (zoom in of Mastcam mosaic mcam04393 using Mastcam-34 lens, acquired on sol 992; see Figure 3a for location) and (b) erosional 
window in Bridger Basin (zoom in of Mastcam mosaic mcam04918 using Mastcam-100 lens, acquired on sol 1,106; see Figure 3b for location), illustrating 
correspondence with lithostratigraphy. Chemostratigraphic classification is based on target potassium level as the simplest overall discriminator between units (low K2O 
wt% = Stimson; moderate K2O wt% = Murray) (Frydenvang et al., 2016; Siebach et al., 2017).
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To address the inherent complications related to foreshortening and 
variable viewing geometry in translating ground-based rover mosaics to 
plan-view orbital context, we developed a means of systematically coordi-
nating Mastcam and HiRISE image coverage. At each location, the fields 
of view of selected Mastcam mosaics were systematically plotted onto the 
HiRISE image using the azimuth and elevation range of each mosaic. Based 
on integration of the fields of view and topography, viewsheds display-
ing comprehensive Mastcam mosaic outcrop coverage were computed in 
ArcGIS. For outcrops with Mastcam data coverage, the contact mapped 
in the Mastcam images was traced onto the HiRISE image and co-aligned 
DTM, and topographic profiles along the mapped contact were extracted 
from the DTM (Nachon et al., 2020). Where no Mastcam data were availa-
ble, the trace of the contact was interpolated based on unit outcrop expres-
sion as observed in HiRISE images, enabling topographic analysis along 
the regionally continuous contact. This was done based on differences in 
tone, as mentioned above, as well as texture since the Murray generally 
appears more uniform and smooth, and the Stimson can be rougher as 
shown by small shadows.

Once the regional contact was mapped into a shapefile in ArcGIS, natural neighbor 3-D interpolation and trend fit 
(surface of best fit) of the contact points were then performed with the ArcGIS geoprocessing toolbox. The trend 
fit was subtracted from this interpolated surface to compute the deviation of elevation from the regional trend 
of the unconformity along each mapped contact (i.e., the relief), which was overlain on the HiRISE image with 
a representative color ramp. The choice of natural neighbor interpretation was motivated by its computational 
simplicity and the desire for the interpolated surface to fall within the range of measured elevations, limiting the 
likelihood of overestimating eroded thickness.

2.3.  Nomenclature

The International Astronomical Union (IAU) determines formal nomenclature for features on Mars. In this 
manuscript, the following are IAU-designated feature names: Mars, Earth, Gale, Aeolis Mons, and Aeolis 
Palus. All other place, landform, and investigation target names are informal and were selected by the MSL 
Science Team during the course of surface operations. Because no International Stratigraphic Code has 
been established for Mars, all geologic unit names (outcrop, member, formation, group) are also informal. 
These names originate from a practice established before landing, in which the field site was divided into 
1.5 × 1.5 km quadrangles for the geologic mapping that initially informed the traverse plan. Each quad-
rangle was named after a geologic formation, group, or supergroup on Earth by the MSL Science Team 
members responsible for the geologic mapping of a given quadrangle. Names of landforms, targets, and 
units within  those quadrangles were based on other geologic and geographic features that occur in the 
terrestrial region where the formation, group, or supergroup occurs. Note that some locations, landforms, 
investigation targets, and geologic units were named posthumously after colleagues connected to Mars 
exploration or specifically to the MSL mission; in this paper, the features named Murray, for example, honor 
planetary geoscientist Bruce C. Murray. Others, not discussed here, include the Vera Rubin ridge, named 
after astronomer Vera Rubin, and the Carolyn Shoemaker formation named after planetary scientist Carolyn 
Shoemaker.

3.  Paleotopographic Mapping
Establishing key physical characteristics for each unit using Mastcam mosaics, we mapped the contact between 
the darker-toned, medium-grained, platy, cross-bedded Stimson formation sandstone and the lighter-toned, 
fine-grained, finely laminated, recessively weathered, distinctly veined Murray formation mudstone (Figure 1b). 
The mapped contact was then traced onto a HiRISE image map and interpolated between Mastcam data cover-
age to enable topographic analysis along the regionally exposed contact. Geochemical differentiation between 

Mastcam HiRISE (interpolated)

Region
Vertical 

relief (m)
Lateral 

distance (m)
Total vertical 

relief (m)
Total lateral 
distance (m)

Marias Pass 10 250 20 275

Bridger Basin 7 85 13 85

Amargosa Valley 9 180 -- --

Naukluft Plateau 20 560 25 440

Murray Buttes 36 245 71 750

Table 1 
Variability in Paleorelief Along the Mapped Murray-Stimson Contact, 
Observed in Mastcam Data and Interpolated From Orbit, by Region (See 
Figure 1a for Locations; Figure 1c for Elevation Plot, and Figure 3 for 
Detailed Mapping)
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Figure 3.
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the Murray and Stimson units in the Marias Pass and Bridger Basin regions (green and blue boxes, respectively, 
in Figure  1a) was established using laser-induced breakdown spectroscopy (ChemCam) and Alpha-Particle 
X-Ray Spectrometer (APXS) observations. Classification based on the elemental chemistry of 54 total targets 
along the contact in these two regions, including float rock, was 100% in agreement with the independent 
lithostratigraphic classification of these targets based on physical attributes (Figure 2). The principle chem-
ical attribute was (K2O), which has a strong dependence on formation (Frydenvang et  al.,  2016; Siebach 
et al., 2017). It is worth noting, however, that this chemical separation is not as applicable to other outcrops of 
the Stimson formation higher up on the slope of Mt. Sharp, for example, in the Greenheugh pediment region 
(Bedford et al., 2022).

3.1.  Local Paleotopographic Variability Along Murray-Stimson Contact

Contact paleorelief was measured where the contact was mapped along Curiosity's traverse path (see Table 1; 
Figure  1c). In the Marias Pass region, the contact is laterally exposed for 250  m revealing 10  m of local 
paleorelief, as observed in Mastcam mosaics, and 20 m of total paleorelief along 275 lateral m of the interpolated 
contact mapped by visual inspection using HiRISE data within the same region (green box in Figures 1a and 1c; 
Figure 3a). At Mt. Stimson in the Marias Pass region (see Figure 3a for location), progressive updip termination 
of depositional surfaces within the Stimson along the contact is evident, consistent with onlap of the unconform-
ity. Additionally, ubiquitous Ca-sulfate-filled fractures in the Murray terminate upward at the Murray-Stimson 
contact, consistent with erosional truncation (Figure 4). Along the southern flank of Mt. Shields, also in the 
Marias Pass region (see Figure  3a for location), a steep, meter-scale incision is directly observed along the 
contact, which is onlapped by basal strata of the Stimson sandstone. Centimeter-scale paleorelief is also present 
along the contact (Edgett et al., 2020; see Figure 2a).

Similar variability in paleorelief is observed in other regions in lower Mt. Sharp (Table 1). At Bridger Basin (blue 
box in Figures 1a and 1c; Figure 3b), the contact outlines a shallow erosional window through the Stimson that 
exposes the underlying Murray (Figures 2b and 5a). Also in this region, at East Glacier, gentle paleoridges and 
paleotroughs of Murray are exposed (Figure 5b). Elsewhere, similar paleolows are infilled by the onlapping Stim-
son formation. Mapping of the Murray-Stimson contact through Amargosa Valley (pink box in Figures 1a and 1c; 
Figures 3c and 5c) is complicated by the interfingering of Bradbury group sandstones with the Murray formation 
mudstones (Grotzinger et al., 2015), substantial sand cover, and isolated mesa exposures in this location, so our 
analysis here is limited to discontinuous segments.

The Naukluft Plateau region (orange box in Figures 1a and 1c; Figures 3d, 5d and 5e) again exposes abruptly 
terminated Ca-sulfate veins at the contact on its eastern edge. A second set of veins, very sparsely distributed, 
crosscuts the Stimson formation, suggesting later fracture and fluid flow events that post-dated the unconformity 
(Yen et al., 2017). At the Murray Buttes (purple box in Figures 1a and 1c; Figure 3e), the contact is interpreted to 
largely follow the base of the buttes (Figure 5f).

3.2.  Regional-Scale Geometry of Unconformity

The Murray-Stimson contact was mapped laterally to the south for 1.8 km and rises by ∼140 m, net elevation 
change (Figure  1c). The mean slope of the unconformity surface is 2.5° based on a linear fit to the contact 
elevation data, derived from a DTM, and closely follows the modern-day slope of ∼1.9° based on a linear fit 
to the same DTM data (Figure 1c). The mapped unconformity surface shows localized but significant devia-
tions from the average 2.5° slope. In particular, low-elevation outliers near Marias Pass and Bridger Basin and 
high-elevation outliers near Big Hole Peak and the Naukluft Plateau were identified through comparison of the 

Figure 3.  HiRISE mosaics showing areas viewed in (red boxes) and combined viewsheds of (light blue shading) Mastcams of interest (red annotation indicates 
Mastcam imaging sequence; e.g., 4,918 = mcam04918), rover traverse by sol (yellow dots; sol numbers on which Mastcams of interest were acquired annotated in black 
text), the mapped Murray-Stimson stratigraphic contact as seen from rover Mastcam images (dark blue) and interpolated using HiRISE images (white dashed) for the 
following Curiosity rover study areas: (a) Marias Pass (see green box in Figure 1a for location; locations of Figures 1b, 2a and 4 also shown), (b) Bridger Basin (see blue 
box in Figure 1a for location; locations of Figures 2b, 5a and 5b also shown), (c) Amargosa Valley (see pink box in Figure 1a for location; location of Figure 5c also 
shown), (d) Naukluft Plateau (see orange box in Figure 1a for location; locations of Figures 5d and 5e also shown), and (e) Murray Buttes (see purple box in Figure 1a 
for location; location of Figure 5f also shown).
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Figure 3.  (Continued)
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interpolated 3-D contact with both the surface of best fit through the mapped contacts (Figure 6) and a represent-
ative surface within the regional DTM (Figure 7).

This mapping is the first of its kind at Gale crater. Previous studies (Banham et al., 2018; Grotzinger et al., 2015) 
proposed the unconformity based on the sharp juxtaposition of the eolian Stimson sandstone above the lacustrine 
Murray mudstone. However, this could represent a simple lowstand in lake level followed by the emplacement of 
a wedge of eolian wind-blown sand without requiring a significant gap in time (sensu Carroll & Bohacs, 1999) in 
contrast to the unconformity hypothesis developed here. The latter requires demonstration of significant erosion 
at a local as well as a more regional scale. Most recently, the Stimson formation was correlated to rocks further 
upslope, several kilometers to the south. Here, the same abrupt truncation surface can be observed at the contact 
with the “Greenheugh Pediment,” which marks the same unconformity, indicating it has regional extent (Banham 
et al., 2021; Bryk et al., 2020).

4.  Discussion
On Earth, regional unconformities may be identified based on stratal geometries (e.g., Vail et al., 1977); erosional 
truncation and onlap are diagnostic expressions. The observed onlap of the Murray-Stimson contact, coupled 
with significant variability in paleorelief, truncation of diagenetic veins, and reworking of older strata and their 
veins to form clasts deposited along surface (Edgett et al., 2020; Newsom et al., 2016), all support the interpre-
tation of an erosional unconformity at the base of the Stimson formation. Local, rover-based observations of 
the meter-scale incision along the unconformity surface support the regional identification of an undulating, 
erosional paleosurface. Eolian facies within basal Stimson strata implicate eolian abrasion as the likely mecha-
nism of erosion, particularly because fluvial deposits such as channel sandstones or conglomerates are absent in 

Figure 3.  (Continued)
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the mapped low points of the paleosurface (Newsom et al., 2016; Edgett et al., 2020). This matches experimen-
tal and theoretical predictions (Day et al., 2016) that erosion of older Gale strata could have formed Mt. Sharp 
by eolian-driven exhumation. Outlier deviations from the regional contact dip may represent local effects such 
as buried impact craters, accentuated wind-scoured topography, or even fluvial incised valleys that were not 
observed by Curiosity.

The orientation of the unconformity provides a constraint on the erosional process that likely contributed to 
the present-day morphology of Gale's central mound. The northward-sloping paleosurface is closely aligned 
with the modern day slope, suggesting that erosional processes in the past may have been similar to those 
operating on more recent timescales. Since more recent erosion at Gale appears to be governed by eolian 
processes (Bridges et al., 2014; Farley et al., 2014), it seems likely that this was also true in the deep past. 
Recent experimental and numerical modeling studies of Gale morphologic analogs have shown that topo-
graphically focused wind circulation patterns favor the excavation of a central mound, given an initially 
thick sequence of layered sedimentary crater fill (Day et al., 2016). In these studies, the fill is eroded by the 
wind in a fashion that produces a central mound consistent with the form of Mt. Sharp. In particular, the 
region of the crater that is being explored by Curiosity is predicted to be excavated, producing a depression 
occupied by the Gale northern crater moat (Aeolis Palus) and an exhumation surface at the position of Curi-
osity's traverse path with a northward-dipping slope. At a more global scale, eolian-driven exhumation also 
accounts for the formation of intracrater mounds (Bennett & Bell, 2016; Grotzinger & Milliken, 2012; Malin 
& Edgett, 2000).

Crater age estimates constrain the interval of deposition of Gale's initial fill (Bradbury group, Mt. Sharp 
group, and any older subsurface strata) as well as the interval of erosion and exhumation to ∼500 My, 
spanning from 3.8 to 3.6 to 3.3–3.1  Ga (Grant et  al.,  2014; Grotzinger et  al.,  2015). Unfortunately, the 
absolute age of the Stimson formation is not known due to its limited areal exposure for crater counting. 
Therefore, the post-exhumation onlap by the Stimson formation could have occurred within and/or after this 
time interval. Either scenario indicates that the unconformity could have spanned hundreds of millions of 

Figure 4.  (a) Map of features in the zoom in of Mastcam mosaic mcam04330 (Mastcam 100 lens) acquired on sol 
980 showing a prominent Ca-sulfate-filled vein (red) in the Murray formation, truncation (denoted with arrow) along 
the Murray-Stimson contact (black dashed line), and bedding planes (black solid lines), which display onlap along the 
unconformity (see Figure 1b for location). (b) Unmarked mosaic in (a).
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Figure 5.  Key Mastcam mosaics with the Murray-Stimson contact mapped (solid white line; dashed, location uncertain due to obscuration) at the following sites: (a) 
Bridger Basin (Mastcam mosaic mcam04918, Mastcam 100 lens, acquired on sol 1,106; see Figure 3b for location), (b) East Glacier (mcam05216, Mastcam 34 lens, 
acquired on sol 1,154; see Figure 3b for location), (c) Amargosa Valley (mcam03193, Mastcam 34 lens, acquired on sol 744; see Figure 3c for location), (d) eastern 
Naukluft Plateau (mcam05949, Mastcam 100 lens, acquired on sol 1,272; see Figure 3d for location), (e) western Naukluft Plateau (mcam06768, Mastcam 34 lens, 
acquired on sol 1,381; see Figure 3d for location), and (f) Murray Buttes (mcam07069, Mastcam 100 lens, acquired on sol 1,429; see Figure 3e for location).
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years. The shift from the dominantly lacustrine environment represented 
by the Murray formation (Edgar et al., 2020; Fedo et al., 2018; Grotzinger 
et  al.,  2015) to the dry, eolian environment of the Stimson formation 
(Banham et al., 2018, 2021) could be a record of the transition of Mars' 
global environment from wet to predominantly dry, as suggested by orbiter 
observations of the stratigraphic record (Grotzinger & Milliken,  2012; 
Milliken et al., 2010).

A proposed evolutionary sequence that accounts for the stratigraphy and 
morphology of the lower Mt. Sharp group observed in this study (Figure 8) 
involves: (a) deposition of the Mt. Sharp group, including Murray lacus-
trine sediments during a period of wet climate, followed by their burial and 
lithification (Edgar et al., 2020; Fedo et al., 2018; Grotzinger et al., 2015), 
(b) the subsequent deposition of overlying Mt. Sharp group sediments 
(Grotzinger et  al.,  2015), (c) transition to dry climate accompanied by 
wind erosion and exhumation of the buried Mt. Sharp group, including the 
Murray formation, (d) a shift of conditions in the northern crater from net 
erosion to net sediment accumulation to deposit the Stimson eolian sedi-
ments (Banham et al., 2018, 2021) that mantled the unconformity paleoslope 
(Bryk et al., 2020), (e) burial and cementation of Stimson strata (Banham 
et  al.,  2018,  2021; Frydenvang et  al.,  2016), and (f) return to the condi-
tions of net erosion, which exhumed and eroded the Stimson formation 
to create the remnant patches that are exposed across the modern surface 
(Edgett  et al., 2020).

The proposed events outlined above highlight the dynamic environmen-
tal history of Gale crater, recorded by both the strata and their bounding 
unconformable surfaces. In 1909, Eliot Blackwelder noted the signifi-
cance of unconformities on Earth (Blackwelder,  1909) and recognized 

that understanding their structure, and the partitioning of time, could aid in reconstructing past events—a 
principle subsequently extended by Wheeler  (1964), Sloss  (1963), and Vail et  al.  (1977). With a similar 
purpose we suggest that the north-sloping geometry of the base-Stimson unconformity at Gale crater may 
record uniquely martian processes, by which long-lived events of eolian denudation, controlled by the flow 
of air in the absence of tectonic forces, have become embedded within the rock record. Furthermore, that 
the modern slope so closely follows the ancient slope implies a certain uniformity of process over the gulf 
of martian geologic time.

Figure 6.  Deviation in elevation (in meters) of the interpolated regional 
Murray-Stimson contact surface from surface of best fit through the contact 
plotted on mosaic of HiRISE images. Warm colors denote positive deviation; 
cool colors, negative. Note the variability in paleorelief and outliers along the 
contact.

Figure 7.  Methods for interpolating the contact surface, showing natural neighbor interpolation and trend fit.
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Data Availability Statement
All HiRISE images (McEwen, 2007, 2009) can be downloaded from the PDS Geosciences Node Mars Orbital 
Data Explorer (https://ode.rsl.wustl.edu/mars/). Archived data are accessible here: https://data.caltech.edu/
records/20101, see Watkins et al. (2022).
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