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Martian landscapes of fluvial ridges carved 
from ancient sedimentary basin fill

Benjamin T. Cardenas    1,2 , Michael P. Lamb1 and John P. Grotzinger1

Large sedimentary basins contain archives of Earth history. It is unknown 
to what extent similar basins existed on Mars because there are few 
observations relating to the subsurface and it is difficult to identify buried 
deposits. Here, we used numerical simulations to show that landscapes of 
networks of topographic ridges that are abundant on the surface of Mars 
may represent erosional windows into thick, basin-filling river deposits 
that accumulated over long time spans. We used a numerical model to 
drive hillslope creep and differential erosion from the wind to simulate 
Mars-like exhumation processes acting on basin-filling fluvial strata, 
which we based on those buried in the Gulf of Mexico on Earth, as imaged 
using three-dimensional reflectance seismology. Simulations produced 
remarkably Martian landscapes in which the preferential erosion of 
mudstone relative to sandstone channel belts leads to the development 
of complex patterns of intersecting ridges. Our findings contrast to the 
existing view of ridged Martian landscapes as thin-skinned surface deposits 
preserving fluvial landscapes at a snapshot in time. Instead, the ridge 
cross-cutting patterns produced by the model reflect the exhumation 
of channel bodies at different stratigraphic levels, exposing basin strata 
accumulated over time scales of 500,000 years. Thus, we propose that 
fluvial ridges on Mars may expose an archive of long-lived aqueous 
processes.

On Earth, large sedimentary basins are a major repository for informa-
tion about Earth history including sea-level change, climate change and 
the evolution of life1–6. Earth’s ancient sedimentary basins importantly 
preserve complex organic compounds and other biosignatures as 
records of the early microbial biosphere and therefore provide a strong 
incentive for sampling on Mars7,8. In contrast, most basins on Mars 
have been located in craters with watersheds that sample relatively 
small parts of the ancient Martian surface9–11, but larger depositional 
areas may have existed beyond craters as part of larger source-to-sink 
rivers influenced by broader climate conditions12–17. If so, the layers of 
sedimentary rock within those basins could contain a unique record 
of Martian environmental history. Part of the difficulty in identify-
ing whether Mars had large basins is that sensors designed to image 

the subsurface cannot penetrate rock to great depths18 or are station-
ary19. On Earth, large swaths of subsurface basin stratigraphy have been 
imaged in high-resolution three-dimensional (3D) seismic volumes, 
and older basin-filling rocks are exposed at the surface owing primar-
ily to tectonic uplift and erosion. It is, however, possible that erosion 
on Mars, even in the absence of plate tectonic geodynamic forces to 
both subside and uplift basins, has also exhumed sedimentary rocks 
that were once deeply buried10,12–14,16.

Networks of topographic ridges might be landforms produced 
during the exhumation of fluvial sedimentary rocks on Mars12,20–24. 
These ridges have the appearance of river channels in planform, but 
are topographic highs rather than lows (Fig. 1). One hypothesis is that 
fluvial ridges formed during the erosion of alluvial sequences—the 
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Exhuming basin-filling stratigraphy
Here, we tested the hypothesis that networks of topographic ridges can 
form from the exhumation of channel belts within thick basin-filling 
strata. We performed numerical landscape evolution experiments 
by eroding the alluvial strata of an ancient fluvial coastal plain of the 
Gulf of Mexico32, now buried beneath the seafloor and imaged by 3D 
seismic reflectance (Fig. 2 and Extended Data Fig. 1). We used a proxy 
for the ratio of sandstone to mudstone33, Ω, determined from seismic 
properties, which has been used previously to identify fluvial channel 
belts in seismic stratigraphy (Methods and Extended Data Fig. 2). We 
estimated the alluvial sequence imaged in the 3D seismic volume to be 
136 m thick, representing over 500,000 years of deposition based on 
regional subsidence rates34. We identified 11 fluvial channel belts with 
high Ω surrounded by overbank strata with low Ω at different strati-
graphic positions within the volume (Fig. 2). The mean channel belt 
thickness was 15 m with a s.d. of 8 m, while the mean width was 492 m 
with a s.d. of 372 m. These are comparable to the dimensions of fluvial 
ridge caprocks on Mars, which are on the order of 10 m thick27 and tens 
to hundreds of metres wide35.

We modelled two erosional processes thought to be important in 
modifying the Martian surface today and probably throughout the last 

stratigraphy accumulated within channels and along floodplains of 
net-depositional rivers22. In this scenario, fluvial ridges represent 
channel belts, the coarse-grained sedimentary deposits that record 
the lateral migration and vertical aggradation of river channels. 
Coarse-grained channel belts are thought to be more resistant than 
the finer-grained floodplain deposits surrounding channel belts, such 
that differential erosion by the wind or hillslope processes results 
in the formation of ridges20–23, with cliff-forming sandstones often 
capping slope-forming mudstones17,25,26(Fig. 1). Many fluvial ridges 
on Earth form in this way, representing erosional windows into thick 
alluvial sequences from Earth history20,23,27–29. Fluvial channel belts are 
a valuable source of information about environmental history1, and 
have clear importance in reconstructing ancient aqueous environ-
ments on Mars13,15. Similar erosional windows into alluvial sequences 
on Mars would allow for high-fidelity reconstructions of the ancient 
Martian surface both from orbital observations and rover exploration. 
Another river-related ridge formation mechanism is the minor erosion 
of sediment lags in bypass or net-erosional rivers. Such ridges would 
represent a landscape at a snapshot in time rather than basin stratig-
raphy integrating over long time scales29. Other hypotheses for ridge 
formation exist, including subglacial eskers30 and lava flows31.
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Fig. 1 | Fluvial ridges and sandstone cliffs on Mars. a–c, Digital elevation 
models constructed from Context Camera stereo pairs of fluvial ridges forming 
complex intersecting patterns exposed at Aeolis Dorsa (see Supplementary Table 
2 for a list of stereo pairs): north-branching network of fluvial ridges (a), network 
of fluvial ridges branching to the north and south (b) and network of fluvial ridges 
with complex intersections (c). d, Curiosity rover Mastcam mosaic (ML_4119, sol 

938) showing sandstone cliff overlying a sloping exposure of mudstones in the 
Murray Formation17,25. While this deposit is thought to be subaqueous in origin25 
rather than a fluvial ridge, it illustrates from the ground how differential erosion 
from the wind has led to cliff-forming sandstones that overlie slope-forming 
mudstones. The tip of the sandstone exposure is about 1 m thick (image credit for 
a–d: NASA/JPL-Caltech/MSSS).
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3 billion years: disturbance-driven hillslope soil production and creep27, 
and abrasion from wind erosion20,23 (Methods). Erosion rates by both 
processes were set to be a function of rock strength, and, in turn, the 
relative amount of stronger sandstone versus weaker mudstone as meas-
ured by Ω (Methods). There was not an imposed uplift rate at the domain 
boundaries, and hillslope creep is zero on a flat landscape, such that the 
pace of exhumation was set by wind erosion alone and soil creep acted 
to smooth the topography. We used the seismic volume as input into 
the numerical model, starting with a flat landscape. Landforms devel-
oped throughout the simulations due to differential erosion between 
sandstone and mudstone. We performed three numerical experiments 
where we varied the relative strength of wind erosion versus hillslope 
creep. We evolved all the landscapes over millions of years to a similar 
final degree of exhumation, such that the central pixel in the domain 
was eroded by 116 m, and compared these landscapes.

Mars-like landscapes with fluvial ridges
In experiment 1, erosion was driven 99% by the wind and 1% by hillslope 
soil creep (Methods). Channel belts were progressively exhumed to 
form sinuous topographic ridges. During exhumation, ridge evolu-
tion continued with narrowing, followed by segmentation (Fig. 3a–d 
and Supplementary Data Video 1). None of the ridges were completely 
removed in this experiment. Narrow and isolated remnants of the strati-
graphically highest ridges persisted through the exhumation of the 
stratigraphically lowest ridges, primarily at locations where ridges 
were stacked vertically (Fig. 3). This experiment generated the most 
topographic relief (Extended Data Fig. 3). Importantly, the shape of the 
final landscape did not represent the pattern of channel belts or river 
channels at any one stratigraphic level (Fig. 2), but rather the integra-
tion of all channel belt patterns throughout the stratigraphy (Fig. 3b). 
This was demonstrated by the variability in ridgetop elevations, espe-
cially at locations where belts were partially stacked and topography 
stepped up and down from the top of one belt onto the top of another 
belt (Fig. 3b–f). Even along a single channel belt, erosion was variable 
by several metres owing to the along-belt variability in Ω observed in 
the seismic volume (Fig. 2).

In experiment 2 (75% driven by wind and 25% by hillslope soil 
creep), ridges eroded more quickly relative to the average eleva-
tion of the landscape, such that overall landscape relief was reduced  
(Fig. 4). The rate of soil creep scales with topographic slope. Therefore, 
soil creep acted to denude ridges with steep side slopes and smooth 

the topography. The landscape at the final time step preserved only 
the stratigraphically lowest channel belts as fluvial ridges, with only 
isolated remnants of higher channel belts preserved where they were 
stacked above lower channel belts (Fig. 4b and Supplementary Data 
Video 2). Results were similar in experiment 3 (55% driven by wind and 
45% by hillslope soil creep): ridges narrowed, became segmented, and 
were completely removed owing to hillslope creep before stratigraphi-
cally lower channel belts were exhumed (Supplementary Data Video 3).  
The final landscape had low relief and lacked well-defined ridges, and 
thus presented no clear indicator that channel belts had been an impor-
tant part of the eroded stratigraphic section (Extended Data Fig. 3  
and Fig. 4). Difference maps comparing experiment 1 with the other 
experiments showed that patterns in erosion mimicked channel belt 
patterns (Fig. 4d,e).

Fluvial ridges form along erosional windows into 
basin stratigraphy
Experiment 1, with 99% wind-driven erosion, created a remarkably 
Martian landscape (Fig. 3). This synthetic landscape showed the same 
complexity in branching patterns and ridgetop elevations observed 
at Aeolis Dorsa22,36(Fig. 1) and other regions of Mars9,11,24,37 with fluvial 
ridges. Our results provide quantitative support for the hypothesis 
that the observed complexity in ridge patterns on Mars reflects the 
exhumation of channel belts from different stratigraphic levels21–24,36,37. 
Channel belts at different stratigraphic positions are best identified 
where ridge tops intersect at different elevations. On Mars, similar 
elevation offsets in crossing ridges have been observed21,23. Our work 
also is consistent with local observations from terrestrial analogues 
of individual ridges23,28,29, but expands on this earlier work to show 
that ridge networks can be produced from deep exhumation of fluvial 
strata at a regional scale. Overall, our results suggest that fluvial ridges 
on Mars could be a surface expression of erosional windows into large, 
and potentially deep, ancient basins. Though some regions also show 
more diffuse ridges and landscapes similar to experiment 2 (for exam-
ple, Arabia Terra)12,37, the results suggest that hillslope diffusion and its 
driving processes, possibly including microimpacts38, marsquakes19 and 
permafrost sublimation39, have played a lesser role than wind erosion 
in the exhumation of basins in Mars’ dry Amazonian Period (3 billion 
years ago to present).

It is common on Mars to assume that ridges are thin sedimen-
tary veneers from rivers that flowed over a landscape that was mostly 
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Fig. 2 | Horizontal slices showing river channel belts in the 3D seismic volume. Four horizontal slices from the 3D seismic volume. Depth, z, shows the vertical 
distance beneath the shallowest slice in the volume.
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Fig. 3 | Hillshade maps showing the evolution of fluvial ridges. a, Evolution 
of modelled landscape topography (hillshade maps; illumination from 315° at 
45°) for experiment 1 (99% wind-driven) at different erosional stages, defined 
by the elevation of the central pixel, zcentral. b, Detailed results from zcentral = −58 
m, showing locations of topographic profiles C–C′, D–D′, E–E′ and F–F′ as white 
dashed lines. Individual and stacked channel belts are annotated with grey 

arrows. Red arrows mark the extent of along-ridgetop profiles captured in D–D′ 
and F–F′. c–f, Topographic profiles C–C′ (c), D–D′ (d), E–E′ (e) and F–F′ (f) from b 
show ridge tops formed from channel belts at different stratigraphic levels and 
topographic breaks where channel belts are stacked. Grey arrows in c, e and f 
point to the same ridge tops as in b. Both d and f have 1–2 km sections along ridge 
tops (red arrows) where relief is variable and controlled by erosion.
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similar to the modern topography35,40,41. While there is evidence that 
the largest-scale topographic features on Mars, such as the topo-
graphic dichotomy and large impact basins, have persisted since Mars’ 
river-forming era12,42, our results showed that networks of ridges may 
not represent an inverted ancient riverine landscape. Instead, the 
modern landscape of ridges reflects differential erosion into basin stra-
tigraphy accumulated over long time scales in which deposits of differ-
ent ages and different stratigraphic levels are now exposed at the land 
surface. The high-relief landscapes we generated in our experiments are 
in great contrast to the relatively flat relief of the coastal plain setting 

in which the stratigraphy originally accumulated32, without needing 
to invoke tectonic tilting or warping to explain complexity in relief40. 
Reconstructing ancient environments from fluvial stratigraphy chal-
lenges a common assumption in planetary surface processes. Instead 
of relying on modern regional topography to guide interpretations 
of river network patterns and channel slopes, the ridges, instead, may 
be a topographic indicator of an erosional window into ancient worlds 
encoded into stratigraphy12.

The evidence that ridges represent exposed stratigraphy of sev-
eral channelized deposits may also support a fluvial origin over other 
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Fig. 4 | Synthetic landscapes and difference maps from the three 
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(driven 75% by wind and 25% by hillslope creep). c, Experiment 3 (driven 55% by 
wind and 45% by hillslope creep). d, Map topography from experiment 1 minus 
experiment 2. e, Map topography from experiments 1 minus 3.
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hypotheses. For example, although eskers are depositional landforms, 
they form beneath glaciers in what is typically a net-erosional environ-
ment43, which precludes the preservation of thick sequences of stacked, 
channelized deposits. Preserved eskers in the ancient rock record are 
rare on Earth, and where they occur, they require special circumstances, 
such as deglaciation and sea-level rise to shift to a net-depositional 
environment44. Even in that case44, the deposit is only from a single 
esker, not a sequence of channelized deposits at different stratigraphic 
levels. Likewise, lava flows that generate ridges form from lava filling a 
single river valley, typically in a net/erosional landscape29, and there-
fore would also lack the stratigraphic architecture of ridges on Mars. 
In broader lava fields, flows can self-channelize like rivers and form 
multiple branches and lobes45. However, unlike rivers that sort sand and 
mud between channel and floodplain deposits, lava fields lack a similar 
mechanism to create systematic spatial variations in rock strength, 
which are necessary for ridge formation during exhumation20,23.

The Martian stratigraphic record
On Earth, the sedimentary record is built within basins, where sediment 
accumulation is accommodated by relatively slow subsidence driven 
by a number of possible processes3, including tectonics. These types of 
basins may not have existed on early Mars, as a lack of plate tectonics 
and a thick, rigid lithosphere would not have supported slow subsid-
ence13. Accommodation space for long-lasting deposition on ancient 
Mars may instead have been created instantaneously during impacts, 
including the creation of the hemispheric topographic dichotomy46. 
Rapidly generated accommodation space on Earth allows for the unusu-
ally complete preservation of sedimentary deposits47, rather than the 
more typical deposit reworking and signal degradation48,49. That is, not 
only might the sedimentary record of Mars be well exposed along ero-
sional windows, but the exposed stratigraphy may be an exceptionally 
complete record of Martian history during the planet’s most habitable 
period. Notably, the intracrater plains of the southern hemisphere 
also have networks of fluvial ridges downstream of erosional valley 
networks, indicating the potential for long-lived source-to-sink river 
systems terminating in basins much larger than craters12. Fluvial strata 
exposed in erosional windows are the guide to finding favourable pres-
ervation of organic compounds and other potential biosignatures7,8.
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Methods
Three-dimensional seismic volume
Cenozoic-aged strata buried in the subsurface Gulf of Mexico accu-
mulated in a variety of near-coastal environments, including delta 
topsets, coastal plains, incised valleys and submarine environments, 
with variability driven by sea-level change and the reorganization of 
drainage basins and sediment routing across North America32,50–54. 
We acquired 3D seismic volume B-11-92-LA from the U.S. Geological 
Survey’s National Archive of Marine Seismic Surveys website (https://
walrus.wr.usgs.gov/NAMSS/; Extended Data Fig. 1), in which we identi-
fied fluvial channel belts in every horizontal slice in the time interval 
of 484–620 ms of two-way travel time (ms TWT, a proxy for depth; 
Fig. 2). These features were interpreted as fluvial channel belts rather 
than submarine channel belts or fault windows on the basis of their 
elongated planview geometry and width-to-thickness ratios greater 
than 1 (ref. 55). We defined a smaller subset of the survey at this time 
interval bound by crosslines 402–1,521 and inlines 1,900–2,822 to 
decrease the processing time. The study area was ~4 km × 7 km with 
20 m pixel resolution (Extended Data Fig. 1). We assumed that 1 ms TWT 
is equivalent to 1 m depth34, producing a voxel thickness of 4 m and a 
total stratigraphic thickness of 136 m based on the 4 ms sampling rate 
reported in the volume metadata. We assumed the same conversion to 
depth as used for the entire volume, though this conversion is only an 
estimate and is likely to be spatially variable. Assuming a subsidence 
rate of 0.26 m kyr−1 (ref. 34), we calculated this stratigraphic package to 
have accumulated over the course of ~500,000 years.

In Petrel, we converted the original amplitude volume into a sweet-
ness volume. Sweetness is a seismic attribute equal to the instantaneous 
amplitude divided by the square root of the instantaneous frequency56. 
Sweetness reflects the ratio of sandstone to mudstone, and is exceed-
ingly useful for identifying fluvial channel belts33,57–59. The contrast-
ing lithologies of alluvial stratigraphy, where channel belts are more 
sandstone rich and overbank strata are more mudstone rich, is thought 
to be the primary mechanism creating the spatially variable erosion 
rates that lead to fluvial ridge formation20,23,27, and thus sweetness is 
the lithology attribute we used to set the rates of landscape evolution 
processes in the model. Channel belt thicknesses were measured in 
milliseconds of TWT every ten crosslines directly in Petrel using the 
measure tool (n = 84). Channel belt widths were measured by map-
ping channel belt edges using scaled horizontal slices in ArcGIS, and 
calculating the distance from each point on one edge of the belt to the 
closest point on the opposite edge. We report a mean width for every 
belt (n = 11), and the s.d. of the means.

Using the Python program ‘segyio’ (https://github.com/equinor/
segyio), we converted the volume to a 3D numpy array for further 
processing. Raw sweetness values were well described by a gamma 
distribution (Extended Data Fig. 2). For normalization purposes, we 
defined Ω as a dimensionless number equal to the sweetness value 
divided by the maximum sweetness; thus, Ω varies from 0 to 1, with a 
mean of 0.30 and a s.d. of 0.18.

Landscape evolution sensitive to lithology
We imported the sweetness volume into a landscape evolution model 
we built using a Landlab grid with open boundaries60,61. We set the reso-
lution of the grid to 20 m, the lateral resolution of the seismic volume. 
This is similar to the 18 m resolution of Context Camera stereo-pair 
digital elevation models of the Martian surface62,63 (Fig. 1a–c). The 
model simulated two processes that evolved topography through ero-
sion based on sweetness sampled from the seismic volume and topo-
graphic slope. The first process was wind-driven sand abrasion, which 
is common on modern Mars and known to produce lithology-sensitive 
erosion rates20,23,28,64–66. We modelled this process using a spatially 
variable erosion rate that depended on Ω in each cell sampled from the 
seismic volume. The second process was disturbance-driven soil creep 
(for example, due to microimpacts38, marsquakes19 and permafrost39), 

which we modelled using linear topographic diffusion. The governing 
equation was

dz
dt

= −(Ea + Ed), (1)

where z is the positive-upward vertical dimension, t is time, − dz
dt

 is the 
total vertical erosion rate resulting from wind-driven (aeolian) erosion, 
Ea, and topographic diffusion, Ed.

Aeolian sand transport is largely driven by grain-on-grain impacts 
during saltation67. Impacts from saltating grains are an important 
component of aeolian sediment transport67, and the abrasion of rock 
by saltating sand grains is an important erosional process on Mars26,64,68. 
Given that fluvial ridge formation requires erosion to be sensitive to 
lithology20,23, and that there is no agreed-on erosion law for modelling 
landscape-scale wind-driven exhumation over long time scales68,69, we 
took a simple approach. We defined Ea as

Ea =
K1
Ωm , (2)

where we set m = 2 because erosion rate scales inversely squared with 
tensile strength for abrasion processes driven by repetitive impacts70, 
under the assumption that tensile strength, in turn, might be propor-
tional to sweetness. K1 is a rate constant (with dimensions of L/T).

The second term of equation (1) describes topographic change 
associated with soil creep, which is modelled using linear topographic 
diffusion as38

Ed = −K2∇2z, (3)

where K2 is soil diffusivity with dimensions of L2/T, and ∇2z is the local 
topographic curvature with dimensions of 1/L. We set K2 to vary with 
Ω, on the basis of the observation that sandstones tend to form vertical 
cliffs whereas mudstones tend to form hillslopes23,27 (Fig. 1):

K2 =
K3
Ωn . (4)

In all experiments, we set n equal to 1. K3 has dimensions of L2/T.
We performed three experiments where we explored landscapes 

produced by relative amounts of wind-driven erosion and diffusion. 
The rates of surface erosion on Mars have been estimated by vari-
ous means to range from 10−5 m Myr−1 to 1 m Myr−1 (refs. 71,72), but are 
mostly unknown. Here, we set K1 to 1 m Myr−1, but since we analysed 
the results only in the space of the landforms created, the results are 
insensitive to absolute rates. Time steps vary between and within 
experiments, but on the basis of our selected range of diffusivities and 
the number of turns, we estimate our results to represent millions of 
years of erosion. To explore the impact of hillslope creep, we varied K3 
from 0.01 to 100 m2 Myr−1, a range reasonable for values measured on 
Earth73. In experiments 1, 2 and 3, we set K3 = 0.01, 2 and 100 m2 Myr−1, 
respectively.

Each experiment started with a flat surface at the top of the 
seismic volume. At each time step, equation (1) was solved, the 
topographic surface was updated and the Ω of the surface was  
updated to reflect the intersection of topography with stratigra-
phy. We specifically tracked the elevation of the central pixel of the 
landscape, as we compared landscapes produced from different 
experiments when they shared the same central pixel value (Fig. 4). 
We calculated the total topographic change by each process as the 
sum of the absolute value of elevation change multiplied by cell area. 
If the maximum erosion during any time step was greater than 4 m 
(that is, the estimated vertical resolution of the seismic volume), the 
time step was reduced.
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https://walrus.wr.usgs.gov/NAMSS/
https://github.com/equinor/segyio
https://github.com/equinor/segyio


Nature Geoscience 

Article https://doi.org/10.1038/s41561-022-01058-2

Data availability
The 3D seismic volume used to generate the experimental results is 
available in Caltech’s Research Data Repository74.

Code availability
The numerical model used in the experiments is available in Caltech’s 
Research Data Repository74.
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Extended Data Fig. 1 | Location maps of the seismic volume used in the 
experiment. A: Box shows the location of seismic volume B-11-91-LA relative to 
the Gulf of Mexico, Earth. B: Zoom in to the box in A, showing the full extent of 

the 3D seismic survey (gray area) and the subsection used in the experiments 
(black area).
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Extended Data Fig. 2 | The distribution of Ω. Histogram showing the distribution of the dimensionless sweetness of the full seismic volume.
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Extended Data Fig. 3 | Evolution of topographic relief in each experiment 
relative to the erosion at the central pixel. The standard deviation of elevation 
generated during experiments 1 (99% wind-driven, 1% hillslope creep), 2 (75% 
wind-driven, 25% hillslope creep), and 3 (55% wind-driven, 45% hillslope creep). 

The experiments with less topographic variability evolved fewer fluvial ridges. 
Comparisons in Fig. 4 were performed when all experiments eroded the central 
pixel by 116 m, the value at the end of this plot.
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